MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oen0 Structured version   Visualization version   GIF version

Theorem oen0 7553
Description: Ordinal exponentiation with a nonzero mantissa is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
Assertion
Ref Expression
oen0 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵))

Proof of Theorem oen0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . . 6 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
21eleq2d 2673 . . . . 5 (𝑥 = ∅ → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 ∅)))
3 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
43eleq2d 2673 . . . . 5 (𝑥 = 𝑦 → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 𝑦)))
5 oveq2 6557 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝑦))
65eleq2d 2673 . . . . 5 (𝑥 = suc 𝑦 → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 suc 𝑦)))
7 oveq2 6557 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝐵))
87eleq2d 2673 . . . . 5 (𝑥 = 𝐵 → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 𝐵)))
9 0lt1o 7471 . . . . . . 7 ∅ ∈ 1𝑜
10 oe0 7489 . . . . . . 7 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
119, 10syl5eleqr 2695 . . . . . 6 (𝐴 ∈ On → ∅ ∈ (𝐴𝑜 ∅))
1211adantr 480 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 ∅))
13 simpl 472 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
14 oecl 7504 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
1513, 14jca 553 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On))
16 omordi 7533 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ((𝐴𝑜 𝑦) ·𝑜 ∅) ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
17 om0 7484 . . . . . . . . . . . . . 14 ((𝐴𝑜 𝑦) ∈ On → ((𝐴𝑜 𝑦) ·𝑜 ∅) = ∅)
1817eleq1d 2672 . . . . . . . . . . . . 13 ((𝐴𝑜 𝑦) ∈ On → (((𝐴𝑜 𝑦) ·𝑜 ∅) ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
1918ad2antlr 759 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (((𝐴𝑜 𝑦) ·𝑜 ∅) ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2016, 19sylibd 228 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2115, 20sylan 487 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
22 oesuc 7494 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) = ((𝐴𝑜 𝑦) ·𝑜 𝐴))
2322eleq2d 2673 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (∅ ∈ (𝐴𝑜 suc 𝑦) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2423adantr 480 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ (𝐴𝑜 suc 𝑦) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2521, 24sylibrd 248 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 suc 𝑦)))
2625exp31 628 . . . . . . . 8 (𝐴 ∈ On → (𝑦 ∈ On → (∅ ∈ (𝐴𝑜 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 suc 𝑦)))))
2726com12 32 . . . . . . 7 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ (𝐴𝑜 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 suc 𝑦)))))
2827com34 89 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → (∅ ∈ (𝐴𝑜 𝑦) → ∅ ∈ (𝐴𝑜 suc 𝑦)))))
2928impd 446 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∅ ∈ (𝐴𝑜 𝑦) → ∅ ∈ (𝐴𝑜 suc 𝑦))))
30 0ellim 5704 . . . . . . . . . . . 12 (Lim 𝑥 → ∅ ∈ 𝑥)
31 eqimss2 3621 . . . . . . . . . . . . 13 ((𝐴𝑜 ∅) = 1𝑜 → 1𝑜 ⊆ (𝐴𝑜 ∅))
3210, 31syl 17 . . . . . . . . . . . 12 (𝐴 ∈ On → 1𝑜 ⊆ (𝐴𝑜 ∅))
33 oveq2 6557 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝐴𝑜 𝑦) = (𝐴𝑜 ∅))
3433sseq2d 3596 . . . . . . . . . . . . 13 (𝑦 = ∅ → (1𝑜 ⊆ (𝐴𝑜 𝑦) ↔ 1𝑜 ⊆ (𝐴𝑜 ∅)))
3534rspcev 3282 . . . . . . . . . . . 12 ((∅ ∈ 𝑥 ∧ 1𝑜 ⊆ (𝐴𝑜 ∅)) → ∃𝑦𝑥 1𝑜 ⊆ (𝐴𝑜 𝑦))
3630, 32, 35syl2an 493 . . . . . . . . . . 11 ((Lim 𝑥𝐴 ∈ On) → ∃𝑦𝑥 1𝑜 ⊆ (𝐴𝑜 𝑦))
37 ssiun 4498 . . . . . . . . . . 11 (∃𝑦𝑥 1𝑜 ⊆ (𝐴𝑜 𝑦) → 1𝑜 𝑦𝑥 (𝐴𝑜 𝑦))
3836, 37syl 17 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → 1𝑜 𝑦𝑥 (𝐴𝑜 𝑦))
3938adantrr 749 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1𝑜 𝑦𝑥 (𝐴𝑜 𝑦))
40 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
41 oelim 7501 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4240, 41mpanlr1 718 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4342anasss 677 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4443an12s 839 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4539, 44sseqtr4d 3605 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1𝑜 ⊆ (𝐴𝑜 𝑥))
46 limelon 5705 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
4740, 46mpan 702 . . . . . . . . . . 11 (Lim 𝑥𝑥 ∈ On)
48 oecl 7504 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
4948ancoms 468 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
5047, 49sylan 487 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
51 eloni 5650 . . . . . . . . . 10 ((𝐴𝑜 𝑥) ∈ On → Ord (𝐴𝑜 𝑥))
52 ordgt0ge1 7464 . . . . . . . . . 10 (Ord (𝐴𝑜 𝑥) → (∅ ∈ (𝐴𝑜 𝑥) ↔ 1𝑜 ⊆ (𝐴𝑜 𝑥)))
5350, 51, 523syl 18 . . . . . . . . 9 ((Lim 𝑥𝐴 ∈ On) → (∅ ∈ (𝐴𝑜 𝑥) ↔ 1𝑜 ⊆ (𝐴𝑜 𝑥)))
5453adantrr 749 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∅ ∈ (𝐴𝑜 𝑥) ↔ 1𝑜 ⊆ (𝐴𝑜 𝑥)))
5545, 54mpbird 246 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → ∅ ∈ (𝐴𝑜 𝑥))
5655ex 449 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝑥)))
5756a1dd 48 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 ∅ ∈ (𝐴𝑜 𝑦) → ∅ ∈ (𝐴𝑜 𝑥))))
582, 4, 6, 8, 12, 29, 57tfinds3 6956 . . . 4 (𝐵 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵)))
5958expd 451 . . 3 (𝐵 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 𝐵))))
6059com12 32 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 𝐵))))
6160imp31 447 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   ciun 4455  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549  1𝑜c1o 7440   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oeordi  7554  oeordsuc  7561  oeoelem  7565  oelimcl  7567  oeeui  7569  cantnflt  8452  cnfcom  8480  infxpenc  8724  infxpenc2  8728
  Copyright terms: Public domain W3C validator