MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordex Structured version   Visualization version   GIF version

Theorem oaordex 7525
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
oaordex ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oaordex
StepHypRef Expression
1 onelss 5683 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
21adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
3 oawordex 7524 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +𝑜 𝑥) = 𝐵))
42, 3sylibd 228 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 +𝑜 𝑥) = 𝐵))
5 oaord1 7518 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +𝑜 𝑥)))
6 eleq2 2677 . . . . . . . . . . . . 13 ((𝐴 +𝑜 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +𝑜 𝑥) ↔ 𝐴𝐵))
75, 6sylan9bb 732 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +𝑜 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
87biimprcd 239 . . . . . . . . . . 11 (𝐴𝐵 → (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +𝑜 𝑥) = 𝐵) → ∅ ∈ 𝑥))
98exp4c 634 . . . . . . . . . 10 (𝐴𝐵 → (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +𝑜 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
109com12 32 . . . . . . . . 9 (𝐴 ∈ On → (𝐴𝐵 → (𝑥 ∈ On → ((𝐴 +𝑜 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
1110imp4b 611 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +𝑜 𝑥) = 𝐵) → ∅ ∈ 𝑥))
12 simpr 476 . . . . . . . . 9 ((𝑥 ∈ On ∧ (𝐴 +𝑜 𝑥) = 𝐵) → (𝐴 +𝑜 𝑥) = 𝐵)
1312a1i 11 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +𝑜 𝑥) = 𝐵) → (𝐴 +𝑜 𝑥) = 𝐵))
1411, 13jcad 554 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +𝑜 𝑥) = 𝐵) → (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
1514expd 451 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝑥 ∈ On → ((𝐴 +𝑜 𝑥) = 𝐵 → (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))
1615reximdvai 2998 . . . . 5 ((𝐴 ∈ On ∧ 𝐴𝐵) → (∃𝑥 ∈ On (𝐴 +𝑜 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
1716ex 449 . . . 4 (𝐴 ∈ On → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +𝑜 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))
1817adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +𝑜 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))
194, 18mpdd 42 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
207biimpd 218 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +𝑜 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
2120exp31 628 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +𝑜 𝑥) = 𝐵 → (∅ ∈ 𝑥𝐴𝐵))))
2221com34 89 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ On → (∅ ∈ 𝑥 → ((𝐴 +𝑜 𝑥) = 𝐵𝐴𝐵))))
2322imp4a 612 . . . 4 (𝐴 ∈ On → (𝑥 ∈ On → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵)))
2423rexlimdv 3012 . . 3 (𝐴 ∈ On → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
2524adantr 480 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
2619, 25impbid 201 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  wss 3540  c0 3874  Oncon0 5640  (class class class)co 6549   +𝑜 coa 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator