MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvabs Structured version   Visualization version   GIF version

Theorem nvabs 26911
Description: Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvabs.1 𝑋 = (BaseSet‘𝑈)
nvabs.2 𝐺 = ( +𝑣𝑈)
nvabs.4 𝑆 = ( ·𝑠OLD𝑈)
nvabs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvabs ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))

Proof of Theorem nvabs
StepHypRef Expression
1 nvabs.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvabs.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 nvabs.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 nvabs.6 . . . . 5 𝑁 = (normCV𝑈)
51, 2, 3, 4nvdif 26905 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
65negeqd 10154 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) = -(𝑁‘(𝐵𝐺(-1𝑆𝐴))))
71, 4nvcl 26900 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
873adant2 1073 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
91, 4nvcl 26900 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1093adant3 1074 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℝ)
11 simp1 1054 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
12 neg1cn 11001 . . . . . . . . . 10 -1 ∈ ℂ
131, 3nvscl 26865 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1412, 13mp3an2 1404 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
15143adant2 1073 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
161, 2nvgcl 26859 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
1715, 16syld3an3 1363 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
18173com23 1263 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
191, 4nvcl 26900 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2011, 18, 19syl2anc 691 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2120renegcld 10336 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
221, 2nvcom 26860 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
2318, 22syld3an3 1363 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
24 simprr 792 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2514adantrr 749 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (-1𝑆𝐴) ∈ 𝑋)
26 simprl 790 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2724, 25, 263jca 1235 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋))
281, 2nvass 26861 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
2927, 28syldan 486 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
30293impb 1252 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
31 eqid 2610 . . . . . . . . . . . 12 (0vec𝑈) = (0vec𝑈)
321, 2, 3, 31nvlinv 26891 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
33323adant3 1074 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
3433oveq2d 6565 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)) = (𝐵𝐺(0vec𝑈)))
351, 2, 31nv0rid 26874 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
36353adant2 1073 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
3730, 34, 363eqtrd 2648 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = 𝐵)
3823, 37eqtrd 2644 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = 𝐵)
3938fveq2d 6107 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) = (𝑁𝐵))
401, 2, 4nvtri 26909 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4118, 40syld3an3 1363 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4239, 41eqbrtrrd 4607 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4310recnd 9947 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℂ)
4420recnd 9947 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℂ)
4543, 44subnegd 10278 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))) = ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4642, 45breqtrrd 4611 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
478, 10, 21, 46lesubd 10510 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
486, 47eqbrtrd 4605 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
49 simp2 1055 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
501, 3nvscl 26865 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
5112, 50mp3an2 1404 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
52513adant2 1073 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
53 simp3 1056 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
541, 2nvass 26861 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
5511, 49, 52, 53, 54syl13anc 1320 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
561, 2, 3, 31nvlinv 26891 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
57563adant2 1073 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
5857oveq2d 6565 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)) = (𝐴𝐺(0vec𝑈)))
591, 2, 31nv0rid 26874 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
60593adant3 1074 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
6155, 58, 603eqtrd 2648 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = 𝐴)
6261fveq2d 6107 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) = (𝑁𝐴))
631, 2nvgcl 26859 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6452, 63syld3an3 1363 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
651, 2, 4nvtri 26909 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6664, 65syld3an2 1365 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6762, 66eqbrtrrd 4607 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
681, 4nvcl 26900 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
6911, 64, 68syl2anc 691 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
7010, 8, 69lesubaddd 10503 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵))))
7167, 70mpbird 246 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
7210, 8resubcld 10337 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ∈ ℝ)
7372, 69absled 14017 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (-(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)) ∧ ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))))
7448, 71, 73mpbir2and 959 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818  cle 9954  cmin 10145  -cneg 10146  abscabs 13822  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827  normCVcnmcv 26829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839
This theorem is referenced by:  nmcvcn  26934
  Copyright terms: Public domain W3C validator