HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpari Structured version   Visualization version   GIF version

Theorem normpari 27395
Description: Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar.1 𝐴 ∈ ℋ
normpar.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normpari (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2)))

Proof of Theorem normpari
StepHypRef Expression
1 normpar.1 . . . . 5 𝐴 ∈ ℋ
2 normpar.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubcli 27262 . . . 4 (𝐴 𝐵) ∈ ℋ
43normsqi 27373 . . 3 ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵))
51, 2hvaddcli 27259 . . . 4 (𝐴 + 𝐵) ∈ ℋ
65normsqi 27373 . . 3 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
74, 6oveq12i 6561 . 2 (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
81normsqi 27373 . . . . . 6 ((norm𝐴)↑2) = (𝐴 ·ih 𝐴)
98oveq2i 6560 . . . . 5 (2 · ((norm𝐴)↑2)) = (2 · (𝐴 ·ih 𝐴))
101, 1hicli 27322 . . . . . 6 (𝐴 ·ih 𝐴) ∈ ℂ
11102timesi 11024 . . . . 5 (2 · (𝐴 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴))
129, 11eqtri 2632 . . . 4 (2 · ((norm𝐴)↑2)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴))
132normsqi 27373 . . . . . 6 ((norm𝐵)↑2) = (𝐵 ·ih 𝐵)
1413oveq2i 6560 . . . . 5 (2 · ((norm𝐵)↑2)) = (2 · (𝐵 ·ih 𝐵))
152, 2hicli 27322 . . . . . 6 (𝐵 ·ih 𝐵) ∈ ℂ
16152timesi 11024 . . . . 5 (2 · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))
1714, 16eqtri 2632 . . . 4 (2 · ((norm𝐵)↑2)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))
1812, 17oveq12i 6561 . . 3 ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
191, 2, 1, 2normlem9 27359 . . . . . 6 ((𝐴 𝐵) ·ih (𝐴 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2010, 15addcli 9923 . . . . . . 7 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ
211, 2hicli 27322 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
222, 1hicli 27322 . . . . . . . 8 (𝐵 ·ih 𝐴) ∈ ℂ
2321, 22addcli 9923 . . . . . . 7 ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈ ℂ
2420, 23negsubi 10238 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2519, 24eqtr4i 2635 . . . . 5 ((𝐴 𝐵) ·ih (𝐴 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
261, 2, 1, 2normlem8 27358 . . . . 5 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2725, 26oveq12i 6561 . . . 4 (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))))
2823negcli 10228 . . . . 5 -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈ ℂ
2920, 28, 20, 23add42i 10140 . . . 4 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))))
3023negidi 10229 . . . . . 6 (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = 0
3130oveq2i 6560 . . . . 5 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0)
3220, 20addcli 9923 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) ∈ ℂ
3332addid1i 10102 . . . . 5 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)))
3410, 15, 10, 15add4i 10139 . . . . 5 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3531, 33, 343eqtri 2636 . . . 4 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3627, 29, 353eqtri 2636 . . 3 (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3718, 36eqtr4i 2635 . 2 ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
387, 37eqtr4i 2635 1 (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  0cc0 9815   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146  2c2 10947  cexp 12722  chil 27160   + cva 27161   ·ih csp 27163  normcno 27164   cmv 27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hfvadd 27241  ax-hv0cl 27244  ax-hfvmul 27246  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-hnorm 27209  df-hvsub 27212
This theorem is referenced by:  normpar  27396  normpar2i  27397
  Copyright terms: Public domain W3C validator