HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Structured version   Visualization version   GIF version

Theorem nonbooli 27894
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻𝐹) ∨ (𝐻𝐺)) = 0 but (𝐻 ∩ (𝐹 𝐺)) ≠ 0. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1 𝐴 ∈ ℋ
nonbool.2 𝐵 ∈ ℋ
nonbool.3 𝐹 = (span‘{𝐴})
nonbool.4 𝐺 = (span‘{𝐵})
nonbool.5 𝐻 = (span‘{(𝐴 + 𝐵)})
Assertion
Ref Expression
nonbooli (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13 𝐴 ∈ ℋ
2 nonbool.2 . . . . . . . . . . . . 13 𝐵 ∈ ℋ
31, 2hvaddcli 27259 . . . . . . . . . . . 12 (𝐴 + 𝐵) ∈ ℋ
4 spansnid 27806 . . . . . . . . . . . 12 ((𝐴 + 𝐵) ∈ ℋ → (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)}))
53, 4ax-mp 5 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)})
6 nonbool.5 . . . . . . . . . . 11 𝐻 = (span‘{(𝐴 + 𝐵)})
75, 6eleqtrri 2687 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ 𝐻
8 nonbool.3 . . . . . . . . . . . . 13 𝐹 = (span‘{𝐴})
91spansnchi 27805 . . . . . . . . . . . . . 14 (span‘{𝐴}) ∈ C
109chshii 27468 . . . . . . . . . . . . 13 (span‘{𝐴}) ∈ S
118, 10eqeltri 2684 . . . . . . . . . . . 12 𝐹S
12 nonbool.4 . . . . . . . . . . . . 13 𝐺 = (span‘{𝐵})
132spansnchi 27805 . . . . . . . . . . . . . 14 (span‘{𝐵}) ∈ C
1413chshii 27468 . . . . . . . . . . . . 13 (span‘{𝐵}) ∈ S
1512, 14eqeltri 2684 . . . . . . . . . . . 12 𝐺S
1611, 15shsleji 27613 . . . . . . . . . . 11 (𝐹 + 𝐺) ⊆ (𝐹 𝐺)
17 spansnid 27806 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
181, 17ax-mp 5 . . . . . . . . . . . . 13 𝐴 ∈ (span‘{𝐴})
1918, 8eleqtrri 2687 . . . . . . . . . . . 12 𝐴𝐹
20 spansnid 27806 . . . . . . . . . . . . . 14 (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵}))
212, 20ax-mp 5 . . . . . . . . . . . . 13 𝐵 ∈ (span‘{𝐵})
2221, 12eleqtrri 2687 . . . . . . . . . . . 12 𝐵𝐺
2311, 15shsvai 27607 . . . . . . . . . . . 12 ((𝐴𝐹𝐵𝐺) → (𝐴 + 𝐵) ∈ (𝐹 + 𝐺))
2419, 22, 23mp2an 704 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (𝐹 + 𝐺)
2516, 24sselii 3565 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ (𝐹 𝐺)
26 elin 3758 . . . . . . . . . 10 ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ ((𝐴 + 𝐵) ∈ 𝐻 ∧ (𝐴 + 𝐵) ∈ (𝐹 𝐺)))
277, 25, 26mpbir2an 957 . . . . . . . . 9 (𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺))
28 eleq2 2677 . . . . . . . . 9 ((𝐻 ∩ (𝐹 𝐺)) = 0 → ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ (𝐴 + 𝐵) ∈ 0))
2927, 28mpbii 222 . . . . . . . 8 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ 0)
30 elch0 27495 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 0 ↔ (𝐴 + 𝐵) = 0)
3129, 30sylib 207 . . . . . . 7 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) = 0)
32 ch0 27469 . . . . . . . 8 ((span‘{𝐴}) ∈ C → 0 ∈ (span‘{𝐴}))
339, 32ax-mp 5 . . . . . . 7 0 ∈ (span‘{𝐴})
3431, 33syl6eqel 2696 . . . . . 6 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ (span‘{𝐴}))
358eleq2i 2680 . . . . . . 7 (𝐵𝐹𝐵 ∈ (span‘{𝐴}))
36 sumspansn 27892 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})))
371, 2, 36mp2an 704 . . . . . . 7 ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))
3835, 37bitr4i 266 . . . . . 6 (𝐵𝐹 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐴}))
3934, 38sylibr 223 . . . . 5 ((𝐻 ∩ (𝐹 𝐺)) = 0𝐵𝐹)
4039con3i 149 . . . 4 𝐵𝐹 → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
4140adantl 481 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
426, 8ineq12i 3774 . . . . . 6 (𝐻𝐹) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴}))
433, 1spansnm0i 27893 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4438, 43sylnbi 319 . . . . . 6 𝐵𝐹 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4542, 44syl5eq 2656 . . . . 5 𝐵𝐹 → (𝐻𝐹) = 0)
466, 12ineq12i 3774 . . . . . 6 (𝐻𝐺) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵}))
47 sumspansn 27892 . . . . . . . . 9 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})))
482, 1, 47mp2an 704 . . . . . . . 8 ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))
491, 2hvcomi 27260 . . . . . . . . 9 (𝐴 + 𝐵) = (𝐵 + 𝐴)
5049eleq1i 2679 . . . . . . . 8 ((𝐴 + 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 + 𝐴) ∈ (span‘{𝐵}))
5112eleq2i 2680 . . . . . . . 8 (𝐴𝐺𝐴 ∈ (span‘{𝐵}))
5248, 50, 513bitr4ri 292 . . . . . . 7 (𝐴𝐺 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐵}))
533, 2spansnm0i 27893 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5452, 53sylnbi 319 . . . . . 6 𝐴𝐺 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5546, 54syl5eq 2656 . . . . 5 𝐴𝐺 → (𝐻𝐺) = 0)
5645, 55oveqan12rd 6569 . . . 4 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = (0 0))
57 h0elch 27496 . . . . 5 0C
5857chj0i 27698 . . . 4 (0 0) = 0
5956, 58syl6eq 2660 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = 0)
60 eqeq2 2621 . . . . 5 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → ((𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ (𝐻 ∩ (𝐹 𝐺)) = 0))
6160notbid 307 . . . 4 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → (¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = 0))
6261biimparc 503 . . 3 ((¬ (𝐻 ∩ (𝐹 𝐺)) = 0 ∧ ((𝐻𝐹) ∨ (𝐻𝐺)) = 0) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6341, 59, 62syl2anc 691 . 2 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
64 ioran 510 . 2 (¬ (𝐴𝐺𝐵𝐹) ↔ (¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹))
65 df-ne 2782 . 2 ((𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6663, 64, 653imtr4i 280 1 (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  cin 3539  {csn 4125  cfv 5804  (class class class)co 6549  chil 27160   + cva 27161  0c0v 27165   S csh 27169   C cch 27170   + cph 27172  spancspn 27173   chj 27174  0c0h 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326  ax-hcompl 27443
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-lm 20843  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cfil 22861  df-cau 22862  df-cmet 22863  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ssp 26961  df-ph 27052  df-cbn 27103  df-hnorm 27209  df-hba 27210  df-hvsub 27212  df-hlim 27213  df-hcau 27214  df-sh 27448  df-ch 27462  df-oc 27493  df-ch0 27494  df-shs 27551  df-span 27552  df-chj 27553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator