MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmordi Structured version   Visualization version   GIF version

Theorem nnmordi 7598
Description: Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmordi (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Proof of Theorem nnmordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 6967 . . . . . 6 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
21expcom 450 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴 ∈ ω))
3 eleq2 2677 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
4 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝐵))
54eleq2d 2673 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
63, 5imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
76imbi2d 329 . . . . . . . . 9 (𝑥 = 𝐵 → ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))) ↔ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
8 eleq2 2677 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
9 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 ∅))
109eleq2d 2673 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅)))
118, 10imbi12d 333 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅))))
12 eleq2 2677 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
13 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝑦))
1413eleq2d 2673 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))
1512, 14imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))))
16 eleq2 2677 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
17 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 suc 𝑦))
1817eleq2d 2673 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))
1916, 18imbi12d 333 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))
20 noel 3878 . . . . . . . . . . . 12 ¬ 𝐴 ∈ ∅
2120pm2.21i 115 . . . . . . . . . . 11 (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅))
2221a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅)))
23 elsuci 5708 . . . . . . . . . . . . . . . 16 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
24 nnmcl 7579 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·𝑜 𝑦) ∈ ω)
25 simpl 472 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → 𝐶 ∈ ω)
2624, 25jca 553 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω))
27 nnaword1 7596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 𝑦) ⊆ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
2827sseld 3567 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
2928imim2d 55 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))))
3029imp 444 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3130adantrl 748 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
32 nna0 7571 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ·𝑜 𝑦) ∈ ω → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) = (𝐶 ·𝑜 𝑦))
3332ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) = (𝐶 ·𝑜 𝑦))
34 nnaordi 7585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ω ∧ (𝐶 ·𝑜 𝑦) ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3534ancoms 468 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3635imp 444 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
3733, 36eqeltrrd 2689 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
38 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝑦))
3938eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶) ↔ (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4037, 39syl5ibrcom 236 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4140adantrr 749 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4231, 41jaod 394 . . . . . . . . . . . . . . . . 17 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4326, 42sylan 487 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4423, 43syl5 33 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
45 nnmsuc 7574 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·𝑜 suc 𝑦) = ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
4645eleq2d 2673 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦) ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4746adantr 480 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦) ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4844, 47sylibrd 248 . . . . . . . . . . . . . 14 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))
4948exp43 638 . . . . . . . . . . . . 13 (𝐶 ∈ ω → (𝑦 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
5049com12 32 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
5150adantld 482 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
5251impd 446 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))))
5311, 15, 19, 22, 52finds2 6986 . . . . . . . . 9 (𝑥 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))))
547, 53vtoclga 3245 . . . . . . . 8 (𝐵 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
5554com23 84 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵 → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
5655exp4a 631 . . . . . 6 (𝐵 ∈ ω → (𝐴𝐵 → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
5756exp4a 631 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵 → (𝐴 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))))
582, 57mpdd 42 . . . 4 (𝐵 ∈ ω → (𝐴𝐵 → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
5958com34 89 . . 3 (𝐵 ∈ ω → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ∈ ω → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
6059com24 93 . 2 (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
6160imp31 447 1 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  c0 3874  suc csuc 5642  (class class class)co 6549  ωcom 6957   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-omul 7452
This theorem is referenced by:  nnmord  7599  mulclpi  9594
  Copyright terms: Public domain W3C validator