MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nneneq Structured version   Visualization version   GIF version

Theorem nneneq 8028
Description: Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
nneneq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem nneneq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4586 . . . . . 6 (𝑥 = ∅ → (𝑥𝑧 ↔ ∅ ≈ 𝑧))
2 eqeq1 2614 . . . . . 6 (𝑥 = ∅ → (𝑥 = 𝑧 ↔ ∅ = 𝑧))
31, 2imbi12d 333 . . . . 5 (𝑥 = ∅ → ((𝑥𝑧𝑥 = 𝑧) ↔ (∅ ≈ 𝑧 → ∅ = 𝑧)))
43ralbidv 2969 . . . 4 (𝑥 = ∅ → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (∅ ≈ 𝑧 → ∅ = 𝑧)))
5 breq1 4586 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
6 eqeq1 2614 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
75, 6imbi12d 333 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑧𝑥 = 𝑧) ↔ (𝑦𝑧𝑦 = 𝑧)))
87ralbidv 2969 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)))
9 breq1 4586 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑧 ↔ suc 𝑦𝑧))
10 eqeq1 2614 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 = 𝑧 ↔ suc 𝑦 = 𝑧))
119, 10imbi12d 333 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥𝑧𝑥 = 𝑧) ↔ (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
1211ralbidv 2969 . . . 4 (𝑥 = suc 𝑦 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
13 breq1 4586 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
14 eqeq1 2614 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑧𝐴 = 𝑧))
1513, 14imbi12d 333 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑧𝑥 = 𝑧) ↔ (𝐴𝑧𝐴 = 𝑧)))
1615ralbidv 2969 . . . 4 (𝑥 = 𝐴 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧)))
17 ensym 7891 . . . . . 6 (∅ ≈ 𝑧𝑧 ≈ ∅)
18 en0 7905 . . . . . . 7 (𝑧 ≈ ∅ ↔ 𝑧 = ∅)
19 eqcom 2617 . . . . . . 7 (𝑧 = ∅ ↔ ∅ = 𝑧)
2018, 19bitri 263 . . . . . 6 (𝑧 ≈ ∅ ↔ ∅ = 𝑧)
2117, 20sylib 207 . . . . 5 (∅ ≈ 𝑧 → ∅ = 𝑧)
2221rgenw 2908 . . . 4 𝑧 ∈ ω (∅ ≈ 𝑧 → ∅ = 𝑧)
23 nn0suc 6982 . . . . . . 7 (𝑤 ∈ ω → (𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧))
24 en0 7905 . . . . . . . . . . . 12 (suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅)
25 breq2 4587 . . . . . . . . . . . . 13 (𝑤 = ∅ → (suc 𝑦𝑤 ↔ suc 𝑦 ≈ ∅))
26 eqeq2 2621 . . . . . . . . . . . . 13 (𝑤 = ∅ → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = ∅))
2725, 26bibi12d 334 . . . . . . . . . . . 12 (𝑤 = ∅ → ((suc 𝑦𝑤 ↔ suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅)))
2824, 27mpbiri 247 . . . . . . . . . . 11 (𝑤 = ∅ → (suc 𝑦𝑤 ↔ suc 𝑦 = 𝑤))
2928biimpd 218 . . . . . . . . . 10 (𝑤 = ∅ → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))
3029a1i 11 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑤 = ∅ → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
31 nfv 1830 . . . . . . . . . . 11 𝑧 𝑦 ∈ ω
32 nfra1 2925 . . . . . . . . . . 11 𝑧𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)
3331, 32nfan 1816 . . . . . . . . . 10 𝑧(𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧))
34 nfv 1830 . . . . . . . . . 10 𝑧(suc 𝑦𝑤 → suc 𝑦 = 𝑤)
35 rsp 2913 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑧 ∈ ω → (𝑦𝑧𝑦 = 𝑧)))
36 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
37 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
3836, 37phplem4 8027 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 ≈ suc 𝑧𝑦𝑧))
3938imim1d 80 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧)))
4039ex 449 . . . . . . . . . . . . . . 15 (𝑦 ∈ ω → (𝑧 ∈ ω → ((𝑦𝑧𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4140a2d 29 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((𝑧 ∈ ω → (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4235, 41syl5 33 . . . . . . . . . . . . 13 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4342imp 444 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧)))
44 suceq 5707 . . . . . . . . . . . 12 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
4543, 44syl8 74 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧)))
46 breq2 4587 . . . . . . . . . . . . 13 (𝑤 = suc 𝑧 → (suc 𝑦𝑤 ↔ suc 𝑦 ≈ suc 𝑧))
47 eqeq2 2621 . . . . . . . . . . . . 13 (𝑤 = suc 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = suc 𝑧))
4846, 47imbi12d 333 . . . . . . . . . . . 12 (𝑤 = suc 𝑧 → ((suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧)))
4948biimprcd 239 . . . . . . . . . . 11 ((suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧) → (𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5045, 49syl6 34 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5133, 34, 50rexlimd 3008 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (∃𝑧 ∈ ω 𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5230, 51jaod 394 . . . . . . . 8 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5352ex 449 . . . . . . 7 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5423, 53syl7 72 . . . . . 6 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑤 ∈ ω → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5554ralrimdv 2951 . . . . 5 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ∀𝑤 ∈ ω (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
56 breq2 4587 . . . . . . 7 (𝑤 = 𝑧 → (suc 𝑦𝑤 ↔ suc 𝑦𝑧))
57 eqeq2 2621 . . . . . . 7 (𝑤 = 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = 𝑧))
5856, 57imbi12d 333 . . . . . 6 (𝑤 = 𝑧 → ((suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
5958cbvralv 3147 . . . . 5 (∀𝑤 ∈ ω (suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧))
6055, 59syl6ib 240 . . . 4 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
614, 8, 12, 16, 22, 60finds 6984 . . 3 (𝐴 ∈ ω → ∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧))
62 breq2 4587 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
63 eqeq2 2621 . . . . 5 (𝑧 = 𝐵 → (𝐴 = 𝑧𝐴 = 𝐵))
6462, 63imbi12d 333 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧𝐴 = 𝑧) ↔ (𝐴𝐵𝐴 = 𝐵)))
6564rspcv 3278 . . 3 (𝐵 ∈ ω → (∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧) → (𝐴𝐵𝐴 = 𝐵)))
6661, 65mpan9 485 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
67 eqeng 7875 . . 3 (𝐴 ∈ ω → (𝐴 = 𝐵𝐴𝐵))
6867adantr 480 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
6966, 68impbid 201 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  c0 3874   class class class wbr 4583  suc csuc 5642  ωcom 6957  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-er 7629  df-en 7842
This theorem is referenced by:  php  8029  onomeneq  8035  nnsdomo  8040  fineqvlem  8059  dif1en  8078  findcard2  8085  cardnn  8672
  Copyright terms: Public domain W3C validator