MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nglmle Structured version   Visualization version   GIF version

Theorem nglmle 22908
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
nglmle.1 𝑋 = (Base‘𝐺)
nglmle.2 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
nglmle.3 𝐽 = (MetOpen‘𝐷)
nglmle.5 𝑁 = (norm‘𝐺)
nglmle.6 (𝜑𝐺 ∈ NrmGrp)
nglmle.7 (𝜑𝐹:ℕ⟶𝑋)
nglmle.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
nglmle.9 (𝜑𝑅 ∈ ℝ*)
nglmle.10 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
nglmle (𝜑 → (𝑁𝑃) ≤ 𝑅)
Distinct variable groups:   𝑘,𝐹   𝐷,𝑘   𝑘,𝐺   𝑘,𝐽   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝑁(𝑘)

Proof of Theorem nglmle
StepHypRef Expression
1 nglmle.6 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
2 ngpgrp 22213 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 ngpms 22214 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
51, 4syl 17 . . . . . . . 8 (𝜑𝐺 ∈ MetSp)
6 msxms 22069 . . . . . . . 8 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
75, 6syl 17 . . . . . . 7 (𝜑𝐺 ∈ ∞MetSp)
8 nglmle.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
9 nglmle.2 . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
108, 9xmsxmet 22071 . . . . . . 7 (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
117, 10syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
12 nglmle.3 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1312mopntopon 22054 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 nglmle.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
16 lmcl 20911 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
1714, 15, 16syl2anc 691 . . . 4 (𝜑𝑃𝑋)
18 nglmle.5 . . . . 5 𝑁 = (norm‘𝐺)
19 eqid 2610 . . . . 5 (0g𝐺) = (0g𝐺)
20 eqid 2610 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
2118, 8, 19, 20, 9nmval2 22206 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃𝑋) → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
223, 17, 21syl2anc 691 . . 3 (𝜑 → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
238, 19grpidcl 17273 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
243, 23syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝑋)
25 xmetsym 21962 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (0g𝐺) ∈ 𝑋) → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2611, 17, 24, 25syl3anc 1318 . . 3 (𝜑 → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2722, 26eqtrd 2644 . 2 (𝜑 → (𝑁𝑃) = ((0g𝐺)𝐷𝑃))
28 nnuz 11599 . . 3 ℕ = (ℤ‘1)
29 1zzd 11285 . . 3 (𝜑 → 1 ∈ ℤ)
30 nglmle.9 . . 3 (𝜑𝑅 ∈ ℝ*)
313adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 ∈ Grp)
32 nglmle.7 . . . . . . 7 (𝜑𝐹:ℕ⟶𝑋)
3332ffvelrnda 6267 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
3418, 8, 19, 20, 9nmval2 22206 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝑋) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3531, 33, 34syl2anc 691 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3611adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
3724adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (0g𝐺) ∈ 𝑋)
38 xmetsym 21962 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (0g𝐺) ∈ 𝑋) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
3936, 33, 37, 38syl3anc 1318 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
4035, 39eqtrd 2644 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((0g𝐺)𝐷(𝐹𝑘)))
41 nglmle.10 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
4240, 41eqbrtrrd 4607 . . 3 ((𝜑𝑘 ∈ ℕ) → ((0g𝐺)𝐷(𝐹𝑘)) ≤ 𝑅)
4328, 12, 11, 29, 15, 24, 30, 42lmle 22907 . 2 (𝜑 → ((0g𝐺)𝐷𝑃) ≤ 𝑅)
4427, 43eqbrtrd 4605 1 (𝜑 → (𝑁𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583   × cxp 5036  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  1c1 9816  *cxr 9952  cle 9954  cn 10897  Basecbs 15695  distcds 15777  0gc0g 15923  Grpcgrp 17245  ∞Metcxmt 19552  MetOpencmopn 19557  TopOnctopon 20518  𝑡clm 20840  ∞MetSpcxme 21932  MetSpcmt 21933  normcnm 22191  NrmGrpcngp 22192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-lm 20843  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator