MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Structured version   Visualization version   GIF version

Theorem mul02 10093
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)

Proof of Theorem mul02
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 9915 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 recn 9905 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 ax-icn 9874 . . . . . . . 8 i ∈ ℂ
4 recn 9905 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 mulcl 9899 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
63, 4, 5sylancr 694 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
7 0cn 9911 . . . . . . . 8 0 ∈ ℂ
8 adddi 9904 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
97, 8mp3an1 1403 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
102, 6, 9syl2an 493 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
11 mul02lem2 10092 . . . . . . 7 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
12 mul12 10081 . . . . . . . . . 10 ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
137, 3, 12mp3an12 1406 . . . . . . . . 9 (𝑦 ∈ ℂ → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
144, 13syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
15 mul02lem2 10092 . . . . . . . . 9 (𝑦 ∈ ℝ → (0 · 𝑦) = 0)
1615oveq2d 6565 . . . . . . . 8 (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0))
1714, 16eqtrd 2644 . . . . . . 7 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0))
1811, 17oveqan12d 6568 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0)))
1910, 18eqtrd 2644 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))
20 cnre 9915 . . . . . . . 8 (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)))
217, 20ax-mp 5 . . . . . . 7 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))
22 oveq2 6557 . . . . . . . . . 10 (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦))))
2322eqeq1d 2612 . . . . . . . . 9 (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))))
2419, 23syl5ibrcom 236 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))))
2524rexlimivv 3018 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))
2621, 25ax-mp 5 . . . . . 6 (0 · 0) = (0 + (i · 0))
27 0re 9919 . . . . . . 7 0 ∈ ℝ
28 mul02lem2 10092 . . . . . . 7 (0 ∈ ℝ → (0 · 0) = 0)
2927, 28ax-mp 5 . . . . . 6 (0 · 0) = 0
3026, 29eqtr3i 2634 . . . . 5 (0 + (i · 0)) = 0
3119, 30syl6eq 2660 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0)
32 oveq2 6557 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦))))
3332eqeq1d 2612 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0))
3431, 33syl5ibrcom 236 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0))
3534rexlimivv 3018 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)
361, 35syl 17 1 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958
This theorem is referenced by:  mul01  10094  cnegex2  10097  mul02i  10104  mul02d  10113  bcval5  12967  fsumconst  14364  demoivreALT  14770  nnnn0modprm0  15349  cnfldmulg  19597  itg2mulc  23320  dvcmulf  23514  coe0  23816  plymul0or  23840  sineq0  24077  jensen  24515  musumsum  24718  lgsne0  24860  brbtwn2  25585  ax5seglem4  25612  axeuclidlem  25642  axeuclid  25643  axcontlem2  25645  axcontlem4  25647  eulerpartlemb  29757  expgrowth  37556  dvcosax  38816
  Copyright terms: Public domain W3C validator