MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexlemd Structured version   Visualization version   GIF version

Theorem mreexexlemd 16127
Description: This lemma is used to generate substitution instances of the induction hypothesis in mreexexd 16131. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlemd.1 (𝜑𝑋𝐽)
mreexexlemd.2 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlemd.3 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlemd.4 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlemd.5 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexlemd.6 (𝜑 → (𝐹𝐾𝐺𝐾))
mreexexlemd.7 (𝜑 → ∀𝑡𝑢 ∈ 𝒫 (𝑋𝑡)∀𝑣 ∈ 𝒫 (𝑋𝑡)(((𝑢𝐾𝑣𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣𝑡)) ∧ (𝑢𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼)))
Assertion
Ref Expression
mreexexlemd (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
Distinct variable groups:   𝑗,𝐹   𝑗,𝐺   𝑗,𝐻   𝜑,𝑗   𝑢,𝑡,𝑣,𝑖,𝐼,𝑗   𝑡,𝐾,𝑢,𝑣   𝑡,𝑁,𝑢,𝑣   𝑡,𝑋,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑡,𝑖)   𝐹(𝑣,𝑢,𝑡,𝑖)   𝐺(𝑣,𝑢,𝑡,𝑖)   𝐻(𝑣,𝑢,𝑡,𝑖)   𝐽(𝑣,𝑢,𝑡,𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mreexexlemd
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlemd.6 . 2 (𝜑 → (𝐹𝐾𝐺𝐾))
2 mreexexlemd.4 . 2 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
3 mreexexlemd.5 . 2 (𝜑 → (𝐹𝐻) ∈ 𝐼)
4 mreexexlemd.7 . . . 4 (𝜑 → ∀𝑡𝑢 ∈ 𝒫 (𝑋𝑡)∀𝑣 ∈ 𝒫 (𝑋𝑡)(((𝑢𝐾𝑣𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣𝑡)) ∧ (𝑢𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼)))
5 simplr 788 . . . . . . . . . . 11 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑢 = 𝑓)
65breq1d 4593 . . . . . . . . . 10 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢𝐾𝑓𝐾))
7 simpr 476 . . . . . . . . . . 11 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑣 = 𝑔)
87breq1d 4593 . . . . . . . . . 10 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑣𝐾𝑔𝐾))
96, 8orbi12d 742 . . . . . . . . 9 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((𝑢𝐾𝑣𝐾) ↔ (𝑓𝐾𝑔𝐾)))
10 simpll 786 . . . . . . . . . . . 12 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑡 = )
117, 10uneq12d 3730 . . . . . . . . . . 11 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑣𝑡) = (𝑔))
1211fveq2d 6107 . . . . . . . . . 10 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑁‘(𝑣𝑡)) = (𝑁‘(𝑔)))
135, 12sseq12d 3597 . . . . . . . . 9 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢 ⊆ (𝑁‘(𝑣𝑡)) ↔ 𝑓 ⊆ (𝑁‘(𝑔))))
145, 10uneq12d 3730 . . . . . . . . . 10 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢𝑡) = (𝑓))
1514eleq1d 2672 . . . . . . . . 9 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((𝑢𝑡) ∈ 𝐼 ↔ (𝑓) ∈ 𝐼))
169, 13, 153anbi123d 1391 . . . . . . . 8 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (((𝑢𝐾𝑣𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣𝑡)) ∧ (𝑢𝑡) ∈ 𝐼) ↔ ((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
17 simpllr 795 . . . . . . . . . . 11 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑢 = 𝑓)
18 simpr 476 . . . . . . . . . . 11 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
1917, 18breq12d 4596 . . . . . . . . . 10 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → (𝑢𝑖𝑓𝑗))
20 simplll 794 . . . . . . . . . . . 12 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑡 = )
2118, 20uneq12d 3730 . . . . . . . . . . 11 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → (𝑖𝑡) = (𝑗))
2221eleq1d 2672 . . . . . . . . . 10 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → ((𝑖𝑡) ∈ 𝐼 ↔ (𝑗) ∈ 𝐼))
2319, 22anbi12d 743 . . . . . . . . 9 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → ((𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼) ↔ (𝑓𝑗 ∧ (𝑗) ∈ 𝐼)))
24 simplr 788 . . . . . . . . . 10 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑣 = 𝑔)
2524pweqd 4113 . . . . . . . . 9 ((((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝒫 𝑣 = 𝒫 𝑔)
2623, 25cbvrexdva2 3152 . . . . . . . 8 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (∃𝑖 ∈ 𝒫 𝑣(𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼) ↔ ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)))
2716, 26imbi12d 333 . . . . . . 7 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((((𝑢𝐾𝑣𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣𝑡)) ∧ (𝑢𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼)) ↔ (((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼))))
28 simpl 472 . . . . . . . . . 10 ((𝑡 = 𝑢 = 𝑓) → 𝑡 = )
2928difeq2d 3690 . . . . . . . . 9 ((𝑡 = 𝑢 = 𝑓) → (𝑋𝑡) = (𝑋))
3029pweqd 4113 . . . . . . . 8 ((𝑡 = 𝑢 = 𝑓) → 𝒫 (𝑋𝑡) = 𝒫 (𝑋))
3130adantr 480 . . . . . . 7 (((𝑡 = 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝒫 (𝑋𝑡) = 𝒫 (𝑋))
3227, 31cbvraldva2 3151 . . . . . 6 ((𝑡 = 𝑢 = 𝑓) → (∀𝑣 ∈ 𝒫 (𝑋𝑡)(((𝑢𝐾𝑣𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣𝑡)) ∧ (𝑢𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼)) ↔ ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼))))
3332, 30cbvraldva2 3151 . . . . 5 (𝑡 = → (∀𝑢 ∈ 𝒫 (𝑋𝑡)∀𝑣 ∈ 𝒫 (𝑋𝑡)(((𝑢𝐾𝑣𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣𝑡)) ∧ (𝑢𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼))))
3433cbvalv 2261 . . . 4 (∀𝑡𝑢 ∈ 𝒫 (𝑋𝑡)∀𝑣 ∈ 𝒫 (𝑋𝑡)(((𝑢𝐾𝑣𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣𝑡)) ∧ (𝑢𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢𝑖 ∧ (𝑖𝑡) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)))
354, 34sylib 207 . . 3 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)))
36 ssun2 3739 . . . . . 6 𝐻 ⊆ (𝐹𝐻)
3736a1i 11 . . . . 5 (𝜑𝐻 ⊆ (𝐹𝐻))
383, 37ssexd 4733 . . . 4 (𝜑𝐻 ∈ V)
39 mreexexlemd.2 . . . . . . . 8 (𝜑𝐹 ⊆ (𝑋𝐻))
40 mreexexlemd.1 . . . . . . . . . . 11 (𝜑𝑋𝐽)
41 difexg 4735 . . . . . . . . . . 11 (𝑋𝐽 → (𝑋𝐻) ∈ V)
4240, 41syl 17 . . . . . . . . . 10 (𝜑 → (𝑋𝐻) ∈ V)
4342, 39ssexd 4733 . . . . . . . . 9 (𝜑𝐹 ∈ V)
44 elpwg 4116 . . . . . . . . 9 (𝐹 ∈ V → (𝐹 ∈ 𝒫 (𝑋𝐻) ↔ 𝐹 ⊆ (𝑋𝐻)))
4543, 44syl 17 . . . . . . . 8 (𝜑 → (𝐹 ∈ 𝒫 (𝑋𝐻) ↔ 𝐹 ⊆ (𝑋𝐻)))
4639, 45mpbird 246 . . . . . . 7 (𝜑𝐹 ∈ 𝒫 (𝑋𝐻))
4746adantr 480 . . . . . 6 ((𝜑 = 𝐻) → 𝐹 ∈ 𝒫 (𝑋𝐻))
48 simpr 476 . . . . . . . 8 ((𝜑 = 𝐻) → = 𝐻)
4948difeq2d 3690 . . . . . . 7 ((𝜑 = 𝐻) → (𝑋) = (𝑋𝐻))
5049pweqd 4113 . . . . . 6 ((𝜑 = 𝐻) → 𝒫 (𝑋) = 𝒫 (𝑋𝐻))
5147, 50eleqtrrd 2691 . . . . 5 ((𝜑 = 𝐻) → 𝐹 ∈ 𝒫 (𝑋))
52 mreexexlemd.3 . . . . . . . . 9 (𝜑𝐺 ⊆ (𝑋𝐻))
5342, 52ssexd 4733 . . . . . . . . . 10 (𝜑𝐺 ∈ V)
54 elpwg 4116 . . . . . . . . . 10 (𝐺 ∈ V → (𝐺 ∈ 𝒫 (𝑋𝐻) ↔ 𝐺 ⊆ (𝑋𝐻)))
5553, 54syl 17 . . . . . . . . 9 (𝜑 → (𝐺 ∈ 𝒫 (𝑋𝐻) ↔ 𝐺 ⊆ (𝑋𝐻)))
5652, 55mpbird 246 . . . . . . . 8 (𝜑𝐺 ∈ 𝒫 (𝑋𝐻))
5756ad2antrr 758 . . . . . . 7 (((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) → 𝐺 ∈ 𝒫 (𝑋𝐻))
5850adantr 480 . . . . . . 7 (((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) → 𝒫 (𝑋) = 𝒫 (𝑋𝐻))
5957, 58eleqtrrd 2691 . . . . . 6 (((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) → 𝐺 ∈ 𝒫 (𝑋))
60 simplr 788 . . . . . . . . . 10 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹)
6160breq1d 4593 . . . . . . . . 9 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓𝐾𝐹𝐾))
62 simpr 476 . . . . . . . . . 10 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
6362breq1d 4593 . . . . . . . . 9 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔𝐾𝐺𝐾))
6461, 63orbi12d 742 . . . . . . . 8 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓𝐾𝑔𝐾) ↔ (𝐹𝐾𝐺𝐾)))
65 simpllr 795 . . . . . . . . . . 11 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → = 𝐻)
6662, 65uneq12d 3730 . . . . . . . . . 10 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔) = (𝐺𝐻))
6766fveq2d 6107 . . . . . . . . 9 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑁‘(𝑔)) = (𝑁‘(𝐺𝐻)))
6860, 67sseq12d 3597 . . . . . . . 8 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ⊆ (𝑁‘(𝑔)) ↔ 𝐹 ⊆ (𝑁‘(𝐺𝐻))))
6960, 65uneq12d 3730 . . . . . . . . 9 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓) = (𝐹𝐻))
7069eleq1d 2672 . . . . . . . 8 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓) ∈ 𝐼 ↔ (𝐹𝐻) ∈ 𝐼))
7164, 68, 703anbi123d 1391 . . . . . . 7 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝐹𝐾𝐺𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺𝐻)) ∧ (𝐹𝐻) ∈ 𝐼)))
7262pweqd 4113 . . . . . . . 8 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝒫 𝑔 = 𝒫 𝐺)
7360breq1d 4593 . . . . . . . . 9 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓𝑗𝐹𝑗))
7465uneq2d 3729 . . . . . . . . . 10 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑗) = (𝑗𝐻))
7574eleq1d 2672 . . . . . . . . 9 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑗) ∈ 𝐼 ↔ (𝑗𝐻) ∈ 𝐼))
7673, 75anbi12d 743 . . . . . . . 8 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓𝑗 ∧ (𝑗) ∈ 𝐼) ↔ (𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼)))
7772, 76rexeqbidv 3130 . . . . . . 7 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼) ↔ ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼)))
7871, 77imbi12d 333 . . . . . 6 ((((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)) ↔ (((𝐹𝐾𝐺𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺𝐻)) ∧ (𝐹𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))))
7959, 78rspcdv 3285 . . . . 5 (((𝜑 = 𝐻) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)) → (((𝐹𝐾𝐺𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺𝐻)) ∧ (𝐹𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))))
8051, 79rspcimdv 3283 . . . 4 ((𝜑 = 𝐻) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)) → (((𝐹𝐾𝐺𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺𝐻)) ∧ (𝐹𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))))
8138, 80spcimdv 3263 . . 3 (𝜑 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐾𝑔𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)) → (((𝐹𝐾𝐺𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺𝐻)) ∧ (𝐹𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))))
8235, 81mpd 15 . 2 (𝜑 → (((𝐹𝐾𝐺𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺𝐻)) ∧ (𝐹𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼)))
831, 2, 3, 82mp3and 1419 1 (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cfv 5804  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812
This theorem is referenced by:  mreexexlem4d  16130  mreexexd  16131  mreexexdOLD  16132
  Copyright terms: Public domain W3C validator