HomeHome Metamath Proof Explorer
Theorem List (p. 92 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 9101-9200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisfin7-2 9101 A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015.)
(𝐴𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))
 
Theoremfin71num 9102 A well-orderable set is VII-finite iff it is I-finite. Thus, even without choice, on the class of well-orderable sets all eight definitions of finite set coincide. (Contributed by Mario Carneiro, 18-May-2015.)
(𝐴 ∈ dom card → (𝐴 ∈ FinVII𝐴 ∈ Fin))
 
Theoremdffin7-2 9103 Class form of isfin7-2 9101. (Contributed by Mario Carneiro, 17-May-2015.)
FinVII = (Fin ∪ (V ∖ dom card))
 
Theoremdfacfin7 9104 Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.)
(CHOICE ↔ FinVII = Fin)
 
Theoremfin1a2lem1 9105 Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 7-Nov-2014.)
𝑆 = (𝑥 ∈ On ↦ suc 𝑥)       (𝐴 ∈ On → (𝑆𝐴) = suc 𝐴)
 
Theoremfin1a2lem2 9106 Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 7-Nov-2014.)
𝑆 = (𝑥 ∈ On ↦ suc 𝑥)       𝑆:On–1-1→On
 
Theoremfin1a2lem3 9107 Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 7-Nov-2014.)
𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))       (𝐴 ∈ ω → (𝐸𝐴) = (2𝑜 ·𝑜 𝐴))
 
Theoremfin1a2lem4 9108 Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 7-Nov-2014.)
𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))       𝐸:ω–1-1→ω
 
Theoremfin1a2lem5 9109 Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 7-Nov-2014.)
𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))       (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸))
 
Theoremfin1a2lem6 9110 Lemma for fin1a2 9120. Establish that ω can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))    &   𝑆 = (𝑥 ∈ On ↦ suc 𝑥)       (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
 
Theoremfin1a2lem7 9111* Lemma for fin1a2 9120. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))    &   𝑆 = (𝑥 ∈ On ↦ suc 𝑥)       ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
 
Theoremfin1a2lem8 9112* Lemma for fin1a2 9120. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII)) → 𝐴 ∈ FinIII)
 
Theoremfin1a2lem9 9113* Lemma for fin1a2 9120. In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014.)
(( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏𝑋𝑏𝐴} ∈ Fin)
 
Theoremfin1a2lem10 9114 Lemma for fin1a2 9120. A nonempty finite union of members of a chain is a member of the chain. (Contributed by Stefan O'Rear, 8-Nov-2014.)
((𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [] Or 𝐴) → 𝐴𝐴)
 
Theoremfin1a2lem11 9115* Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 8-Nov-2014.)
(( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = (𝐴 ∪ {∅}))
 
Theoremfin1a2lem12 9116 Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
(((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)
 
Theoremfin1a2lem13 9117 Lemma for fin1a2 9120. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
(((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) → ¬ (𝐵𝐶) ∈ FinII)
 
Theoremfin12 9118 Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 9120. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
(𝐴 ∈ Fin → 𝐴 ∈ FinII)
 
Theoremfin1a2s 9119* An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
 
Theoremfin1a2 9120 Every Ia-finite set is II-finite. Theorem 1 of [Levy58], p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
(𝐴 ∈ FinIa𝐴 ∈ FinII)
 
2.6.13  Hereditarily size-limited sets without Choice
 
Theoremitunifval 9121* Function value of iterated unions. EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could conceivably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015.)
𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))       (𝐴𝑉 → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
 
Theoremitunifn 9122* Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))       (𝐴𝑉 → (𝑈𝐴) Fn ω)
 
Theoremituni0 9123* A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))       (𝐴𝑉 → ((𝑈𝐴)‘∅) = 𝐴)
 
Theoremitunisuc 9124* Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))       ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
 
Theoremitunitc1 9125* Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.)
𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))       ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
 
Theoremitunitc 9126* The union of all union iterates creates the transitive closure; compare trcl 8487. (Contributed by Stefan O'Rear, 11-Feb-2015.)
𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))       (TC‘𝐴) = ran (𝑈𝐴)
 
Theoremituniiun 9127* Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.)
𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))       (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
 
Theoremhsmexlem7 9128* Lemma for hsmex 9137. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)       (𝐻‘∅) = (har‘𝒫 𝑋)
 
Theoremhsmexlem8 9129* Lemma for hsmex 9137. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)       (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
 
Theoremhsmexlem9 9130* Lemma for hsmex 9137. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)       (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
 
Theoremhsmexlem1 9131 Lemma for hsmex 9137. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑂 = OrdIso( E , 𝐴)       ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵))
 
Theoremhsmexlem2 9132* Lemma for hsmex 9137. Bound the order type of a union of sets of ordinals, each of limited order type. Vaguely reminiscent of unictb 9276 but use of order types allows to canonically choose the sub-bijections, removing the choice requirement. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 18-Sep-2021.)
𝐹 = OrdIso( E , 𝐵)    &   𝐺 = OrdIso( E , 𝑎𝐴 𝐵)       ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
 
Theoremhsmexlem3 9133* Lemma for hsmex 9137. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g. using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝐹 = OrdIso( E , 𝐵)    &   𝐺 = OrdIso( E , 𝑎𝐴 𝐵)       (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
 
Theoremhsmexlem4 9134* Lemma for hsmex 9137. The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015.)
𝑋 ∈ V    &   𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)    &   𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))    &   𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}    &   𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))       ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
 
Theoremhsmexlem5 9135* Lemma for hsmex 9137. Combining the above constraints, along with itunitc 9126 and tcrank 8630, gives an effective constraint on the rank of 𝑆. (Contributed by Stefan O'Rear, 14-Feb-2015.)
𝑋 ∈ V    &   𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)    &   𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))    &   𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}    &   𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))       (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
 
Theoremhsmexlem6 9136* Lemma for hsmex 9137. (Contributed by Stefan O'Rear, 14-Feb-2015.)
𝑋 ∈ V    &   𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)    &   𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))    &   𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}    &   𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))       𝑆 ∈ V
 
Theoremhsmex 9137* The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 8380. (Contributed by Stefan O'Rear, 14-Feb-2015.)
(𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
 
Theoremhsmex2 9138* The set of hereditary size-limited sets, assuming ax-reg 8380. (Contributed by Stefan O'Rear, 11-Feb-2015.)
(𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
 
Theoremhsmex3 9139* The set of hereditary size-limited sets, assuming ax-reg 8380, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.)
(𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
 
PART 3  ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY

In this section we add the Axiom of Choice ax-ac 9164, as well as weaker forms such as the axiom of countable choice ax-cc 9140 and dependent choice ax-dc 9151. We introduce these weaker forms so that theorems that do not need the full power of the axiom of choice, but need more than simple ZF, can use these intermediate axioms instead.

The combination of the Zermelo-Fraenkel axioms and the axiom of choice is often abbreviated as ZFC. The axiom of choice is widely accepted, and ZFC is the most commonly-accepted fundamental set of axioms for mathematics.

However, there have been and still are some lingering controversies about the Axiom of Choice. The axiom of choice does not satisfy those who wish to have a constructive proof (e.g., it will not satisfy intuitionistic logic). Thus, we make it easy to identify which proofs depend on the axiom of choice or its weaker forms.

 
3.1  ZFC Set Theory - add Countable Choice and Dependent Choice
 
3.1.1  Introduce the Axiom of Countable Choice
 
Axiomax-cc 9140* The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 9182, but is weak enough that it can be proven using DC (see axcc 9163). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.)
(𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
 
Theoremaxcc2lem 9141* Lemma for axcc2 9142. (Contributed by Mario Carneiro, 8-Feb-2013.)
𝐾 = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))    &   𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))    &   𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))       𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
 
Theoremaxcc2 9142* A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.)
𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
 
Theoremaxcc3 9143* A possibly more useful version of ax-cc 9140 using sequences 𝐹(𝑛) instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
𝐹 ∈ V    &   𝑁 ≈ ω       𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹))
 
Theoremaxcc4 9144* A version of axcc3 9143 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
𝐴 ∈ V    &   𝑁 ≈ ω    &   (𝑥 = (𝑓𝑛) → (𝜑𝜓))       (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
 
Theoremacncc 9145 An ax-cc 9140 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
AC ω = V
 
Theoremaxcc4dom 9146* Relax the constraint on axcc4 9144 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.)
𝐴 ∈ V    &   (𝑥 = (𝑓𝑛) → (𝜑𝜓))       ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
 
Theoremdomtriomlem 9147* Lemma for domtriom 9148. (Contributed by Mario Carneiro, 9-Feb-2013.)
𝐴 ∈ V    &   𝐵 = {𝑦 ∣ (𝑦𝐴𝑦 ≈ 𝒫 𝑛)}    &   𝐶 = (𝑛 ∈ ω ↦ ((𝑏𝑛) ∖ 𝑘𝑛 (𝑏𝑘)))       𝐴 ∈ Fin → ω ≼ 𝐴)
 
Theoremdomtriom 9148 Trichotomy of equinumerosity for ω, proven using CC. Equivalently, all Dedekind-finite sets (as in isfin4-2 9019) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.)
𝐴 ∈ V       (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)
 
Theoremfin41 9149 Under countable choice, the IV-finite sets (Dedekind-finite) coincide with I-finite (finite in the usual sense) sets. (Contributed by Mario Carneiro, 16-May-2015.)
FinIV = Fin
 
Theoremdominf 9150 A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc 9140. See dominfac 9274 for a version proved from ax-ac 9164. The axiom of Regularity is used for this proof, via inf3lem6 8413, and its use is necessary: otherwise the set 𝐴 = {𝐴} or 𝐴 = {∅, 𝐴} (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013.)
𝐴 ∈ V       ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)
 
3.1.2  Introduce the Axiom of Dependent Choice
 
Axiomax-dc 9151* Dependent Choice. Axiom DC1 of [Schechter] p. 149. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. Dependent choice is equivalent to the statement that every (nonempty) pruned tree has a branch. This axiom is redundant in ZFC; see axdc 9226. But ZF+DC is strictly weaker than ZF+AC, so this axiom provides for theorems that do not need the full power of AC. (Contributed by Mario Carneiro, 25-Jan-2013.)
((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
 
Theoremdcomex 9152 The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
ω ∈ V
 
Theoremaxdc2lem 9153* Lemma for axdc2 9154. We construct a relation 𝑅 based on 𝐹 such that 𝑥𝑅𝑦 iff 𝑦 ∈ (𝐹𝑥), and show that the "function" described by ax-dc 9151 can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝐴 ∈ V    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}    &   𝐺 = (𝑥 ∈ ω ↦ (𝑥))       ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
 
Theoremaxdc2 9154* An apparent strengthening of ax-dc 9151 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.)
𝐴 ∈ V       ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
 
Theoremaxdc3lem 9155* The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Unnecessary distinct variable restrictions were removed by David Abernethy, 18-Mar-2014.) (Contributed by Mario Carneiro, 27-Jan-2013.) (Revised by Mario Carneiro, 18-Mar-2014.)
𝐴 ∈ V    &   𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}       𝑆 ∈ V
 
Theoremaxdc3lem2 9156* Lemma for axdc3 9159. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 9151 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 9151 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence , we can construct the sequence 𝑔 that we are after. (Contributed by Mario Carneiro, 30-Jan-2013.)
𝐴 ∈ V    &   𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}    &   𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})       (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
 
Theoremaxdc3lem3 9157* Simple substitution lemma for axdc3 9159. (Contributed by Mario Carneiro, 27-Jan-2013.)
𝐴 ∈ V    &   𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}    &   𝐵 ∈ V       (𝐵𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
 
Theoremaxdc3lem4 9158* Lemma for axdc3 9159. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 9151 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 9151 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that 𝑆 is nonempty, and that 𝐺 always maps to a nonempty subset of 𝑆, so that we can apply axdc2 9154. See axdc3lem2 9156 for the rest of the proof. (Contributed by Mario Carneiro, 27-Jan-2013.)
𝐴 ∈ V    &   𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}    &   𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})       ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
 
Theoremaxdc3 9159* Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.)
𝐴 ∈ V       ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
 
Theoremaxdc4lem 9160* Lemma for axdc4 9161. (Contributed by Mario Carneiro, 31-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
𝐴 ∈ V    &   𝐺 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ({suc 𝑛} × (𝑛𝐹𝑥)))       ((𝐶𝐴𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔𝑘))))
 
Theoremaxdc4 9161* A more general version of axdc3 9159 that allows the function 𝐹 to vary with 𝑘. (Contributed by Mario Carneiro, 31-Jan-2013.)
𝐴 ∈ V       ((𝐶𝐴𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔𝑘))))
 
Theoremaxcclem 9162* Lemma for axcc 9163. (Contributed by Mario Carneiro, 2-Feb-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
𝐴 = (𝑥 ∖ {∅})    &   𝐹 = (𝑛 ∈ ω, 𝑦 𝐴 ↦ (𝑓𝑛))    &   𝐺 = (𝑤𝐴 ↦ (‘suc (𝑓𝑤)))       (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
 
Theoremaxcc 9163* Although CC can be proven trivially using ac5 9182, we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013.)
(𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
 
3.2  ZFC Set Theory - add the Axiom of Choice
 
3.2.1  Introduce the Axiom of Choice
 
Axiomax-ac 9164* Axiom of Choice. The Axiom of Choice (AC) is usually considered an extension of ZF set theory rather than a proper part of it. It is sometimes considered philosophically controversial because it asserts the existence of a set without telling us what the set is. ZF set theory that includes AC is called ZFC.

The unpublished version given here says that given any set 𝑥, there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. See the rewritten version ac3 9167 for a more detailed explanation. Theorem ac2 9166 shows an equivalent written compactly with restricted quantifiers.

This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 9170 is slightly shorter when the biconditional of ax-ac 9164 is expanded into implication and negation. In axac3 9169 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 9382 (the Generalized Continuum Hypothesis implies the Axiom of Choice).

Standard textbook versions of AC are derived as ac8 9197, ac5 9182, and ac7 9178. The Axiom of Regularity ax-reg 8380 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as theorem dfac2 8836. Equivalents to AC are the well-ordering theorem weth 9200 and Zorn's lemma zorn 9212. See ac4 9180 for comments about stronger versions of AC.

In order to avoid uses of ax-reg 8380 for derivation of AC equivalents, we provide ax-ac2 9168 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 9168 from ax-ac 9164 is shown by theorem axac2 9171, and the reverse derivation by axac 9172. Therefore, new proofs should normally use ax-ac2 9168 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)

𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
 
Theoremzfac 9165* Axiom of Choice expressed with the fewest number of different variables. The penultimate step shows the logical equivalence to ax-ac 9164. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003.)
𝑥𝑦𝑧((𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤))
 
Theoremac2 9166* Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 9167 is easier to understand.) Note: aceq0 8824 shows the logical equivalence to ax-ac 9164. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)
𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
 
Theoremac3 9167* Axiom of Choice using abbreviations. The logical equivalence to ax-ac 9164 can be established by chaining aceq0 8824 and aceq2 8825. A standard textbook version of AC is derived from this one in dfac2a 8835, and this version of AC is derived from the textbook version in dfac2 8836.

The following sketch will help you understand this version of the axiom. Given any set 𝑥, the axiom says that there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. Using the Axiom of Regularity, we can show that 𝑦 is really a set of ordered pairs, very similar to the ordered pair construction opthreg 8398. The key theorem for this (used in the proof of dfac2 8836) is preleq 8397. With this modified definition of ordered pair, it can be seen that 𝑦 is actually a choice function on the members of 𝑥.

For example, suppose 𝑥 = {{1, 2}, {1, 3}, {2, 3, 4}}. Let us try 𝑦 = {{{1, 2}, 1}, {{1, 3}, 1}, {{2, 3, 4}, 2}}. For the member (of 𝑥) 𝑧 = {1, 2}, the only assignment to 𝑤 and 𝑣 that satisfies the axiom is 𝑤 = 1 and 𝑣 = {{1, 2}, 1}, so there is exactly one 𝑤 as required. We verify the other two members of 𝑥 similarly. Thus, 𝑦 satisfies the axiom. Using our modified ordered pair definition, we can say that 𝑦 corresponds to the choice function {⟨{1, 2}, 1⟩, ⟨{1, 3}, 1⟩, ⟨{2, 3, 4}, 2⟩}. Of course other choices for 𝑦 will also satisfy the axiom, for example 𝑦 = {{{1, 2}, 2}, {{1, 3}, 1}, {{2, 3, 4}, 4}}. What AC tells us is that there exists at least one such 𝑦, but it doesn't tell us which one.

(New usage is discouraged.) (Contributed by NM, 19-Jul-1996.)

𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣))
 
Axiomax-ac2 9168* In order to avoid uses of ax-reg 8380 for derivation of AC equivalents, we provide ax-ac2 9168, which is equivalent to the standard AC of textbooks. This appears to be the shortest known equivalent to the standard AC when expressed in terms of set theory primitives. It was found by Kurt Maes as theorem ackm 9170. We removed the leading quantifier to make it slightly shorter, since we have ax-gen 1713 available. The derivation of ax-ac2 9168 from ax-ac 9164 is shown by theorem axac2 9171, and the reverse derivation by axac 9172. Note that we use ax-reg 8380 to derive ax-ac 9164 from ax-ac2 9168, but not to derive ax-ac2 9168 from ax-ac 9164. (Contributed by NM, 19-Dec-2016.)
𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
 
Theoremaxac3 9169 This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 9168 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.)
CHOICE
 
Theoremackm 9170* A remarkable equivalent to the Axiom of Choice that has only five quantifiers (when expanded to , = primitives in prenex form), discovered and proved by Kurt Maes. This establishes a new record, reducing from 6 to 5 the largest number of quantified variables needed by any ZFC axiom. The ZF-equivalence to AC is shown by theorem dfackm 8871. Maes found this version of AC in April, 2004 (replacing a longer version, also with five quantifiers, that he found in November, 2003). See Kurt Maes, "A 5-quantifier (,=)-expression ZF-equivalent to the Axiom of Choice" (http://arxiv.org/PS_cache/arxiv/pdf/0705/0705.3162v1.pdf).

The original FOM posts are: http://www.cs.nyu.edu/pipermail/fom/2003-November/007631.html http://www.cs.nyu.edu/pipermail/fom/2003-November/007641.html. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) (Proof modification is discouraged.)

𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
 
Theoremaxac2 9171* Derive ax-ac2 9168 from ax-ac 9164. (Contributed by NM, 19-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
 
Theoremaxac 9172* Derive ax-ac 9164 from ax-ac2 9168. Note that ax-reg 8380 is used by the proof. (Contributed by NM, 19-Dec-2016.) (Proof modification is discouraged.)
𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
 
Theoremaxaci 9173 Apply a choice equivalent. (Contributed by Mario Carneiro, 17-May-2015.)
(CHOICE ↔ ∀𝑥𝜑)       𝜑
 
Theoremcardeqv 9174 All sets are well-orderable under choice. (Contributed by Mario Carneiro, 28-Apr-2015.)
dom card = V
 
Theoremnumth3 9175 All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.)
(𝐴𝑉𝐴 ∈ dom card)
 
Theoremnumth2 9176* Numeration theorem: any set is equinumerous to some ordinal (using AC). Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 20-Oct-2003.)
𝐴 ∈ V       𝑥 ∈ On 𝑥𝐴
 
Theoremnumth 9177* Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Mario Carneiro, 8-Jan-2015.)
𝐴 ∈ V       𝑥 ∈ On ∃𝑓 𝑓:𝑥1-1-onto𝐴
 
Theoremac7 9178* An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 29-Apr-2004.)
𝑓(𝑓𝑥𝑓 Fn dom 𝑥)
 
Theoremac7g 9179* An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.)
(𝑅𝐴 → ∃𝑓(𝑓𝑅𝑓 Fn dom 𝑅))
 
Theoremac4 9180* Equivalent of Axiom of Choice. We do not insist that 𝑓 be a function. However, theorem ac5 9182, derived from this one, shows that this form of the axiom does imply that at least one such set 𝑓 whose existence we assert is in fact a function. Axiom of Choice of [TakeutiZaring] p. 83.

Takeuti and Zaring call this "weak choice" in contrast to "strong choice" 𝐹𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧), which asserts the existence of a universal choice function but requires second-order quantification on (proper) class variable 𝐹 and thus cannot be expressed in our first-order formalization. However, it has been shown that ZF plus strong choice is a conservative extension of ZF plus weak choice. See Ulrich Felgner, "Comparison of the axioms of local and universal choice," Fundamenta Mathematica, 71, 43-62 (1971).

Weak choice can be strengthened in a different direction to choose from a collection of proper classes; see ac6s5 9196. (Contributed by NM, 21-Jul-1996.)

𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
 
Theoremac4c 9181* Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997.)
𝐴 ∈ V       𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
 
Theoremac5 9182* An Axiom of Choice equivalent: there exists a function 𝑓 (called a choice function) with domain 𝐴 that maps each nonempty member of the domain to an element of that member. Axiom AC of [BellMachover] p. 488. Note that the assertion that 𝑓 be a function is not necessary; see ac4 9180. (Contributed by NM, 29-Aug-1999.)
𝐴 ∈ V       𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
 
Theoremac5b 9183* Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.)
𝐴 ∈ V       (∀𝑥𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
Theoremac6num 9184* A version of ac6 9185 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
(𝑦 = (𝑓𝑥) → (𝜑𝜓))       ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremac6 9185* Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set 𝐵, where 𝜑 depends on 𝑥 (the natural number) and 𝑦 (to specify a member of 𝐵). A stronger version of this theorem, ac6s 9189, allows 𝐵 to be a proper class. (Contributed by NM, 18-Oct-1999.) (Revised by Mario Carneiro, 27-Aug-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑦 = (𝑓𝑥) → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremac6c4 9186* Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
 
Theoremac6c5 9187* Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. Remark after Theorem 10.46 of [TakeutiZaring] p. 98. (Contributed by Mario Carneiro, 22-Mar-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
 
Theoremac9 9188* An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
 
Theoremac6s 9189* Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 8639, we derive this strong version of ac6 9185 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.)
𝐴 ∈ V    &   (𝑦 = (𝑓𝑥) → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremac6n 9190* Equivalent of Axiom of Choice. Contrapositive of ac6s 9189. (Contributed by NM, 10-Jun-2007.)
𝐴 ∈ V    &   (𝑦 = (𝑓𝑥) → (𝜑𝜓))       (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
 
Theoremac6s2 9191* Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 9192. (Contributed by NM, 29-Sep-2006.)
𝐴 ∈ V    &   (𝑦 = (𝑓𝑥) → (𝜑𝜓))       (∀𝑥𝐴𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
 
Theoremac6s3 9192* Generalization of the Axiom of Choice to classes. Theorem 10.46 of [TakeutiZaring] p. 97. (Contributed by NM, 3-Nov-2004.)
𝐴 ∈ V    &   (𝑦 = (𝑓𝑥) → (𝜑𝜓))       (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
 
Theoremac6sg 9193* ac6s 9189 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.)
(𝑦 = (𝑓𝑥) → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
 
Theoremac6sf 9194* Version of ac6 9185 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.)
𝑦𝜓    &   𝐴 ∈ V    &   (𝑦 = (𝑓𝑥) → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremac6s4 9195* Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. (Contributed by NM, 29-Sep-2006.)
𝐴 ∈ V       (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
 
Theoremac6s5 9196* Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. Remark after Theorem 10.46 of [TakeutiZaring] p. 98. (Contributed by NM, 27-Mar-2006.)
𝐴 ∈ V       (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
 
Theoremac8 9197* An Axiom of Choice equivalent. Given a family 𝑥 of mutually disjoint nonempty sets, there exists a set 𝑦 containing exactly one member from each set in the family. Theorem 6M(4) of [Enderton] p. 151. (Contributed by NM, 14-May-2004.)
((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
 
Theoremac9s 9198* An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. This is a stronger version of the axiom in Enderton, with no existence requirement for the family of classes 𝐵(𝑥) (achieved via the Collection Principle cp 8637). (Contributed by NM, 29-Sep-2006.)
𝐴 ∈ V       (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
 
3.2.2  AC equivalents: well-ordering, Zorn's lemma
 
Theoremnumthcor 9199* Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.)
(𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
 
Theoremweth 9200* Well-ordering theorem: any set 𝐴 can be well-ordered. This is an equivalent of the Axiom of Choice. Theorem 6 of [Suppes] p. 242. First proved by Ernst Zermelo (the "Z" in ZFC) in 1904. (Contributed by Mario Carneiro, 5-Jan-2013.)
(𝐴𝑉 → ∃𝑥 𝑥 We 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >