HomeHome Metamath Proof Explorer
Theorem List (p. 49 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 4801-4900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreusv3i 4801* Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑧𝐶 = 𝐷)       (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
 
Theoremreusv3 4802* Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 4792 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑧𝐶 = 𝐷)       (∃𝑦𝐵 (𝜑𝐶𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
 
Theoremeusv4 4803* Two ways to express single-valuedness of a class expression 𝐵(𝑥). (Contributed by NM, 27-Oct-2010.)
𝐵 ∈ V       (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
 
Theoremalxfr 4804* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
 
Theoremralxfrd 4805* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
TheoremralxfrdOLD 4806* Obsolete proof of ralxfrd 4805 as of 7-Aug-2021. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
Theoremrexxfrd 4807* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
 
Theoremralxfr2d 4808* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.)
((𝜑𝑦𝐶) → 𝐴𝑉)    &   (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
Theoremrexxfr2d 4809* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
((𝜑𝑦𝐶) → 𝐴𝑉)    &   (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
 
Theoremralxfrd2 4810* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of ralxfrd 4805. (Contributed by Alexander van der Vekens, 25-Apr-2018.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑦𝐶𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
Theoremrexxfrd2 4811* Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of rexxfrd 4807. (Contributed by Alexander van der Vekens, 25-Apr-2018.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑦𝐶𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
 
Theoremralxfr 4812* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
 
TheoremralxfrALT 4813* Alternate proof of ralxfr 4812 which does not use ralxfrd 4805. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
 
Theoremrexxfr 4814* Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓)
 
Theoremrabxfrd 4815* Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜒. (Contributed by NM, 16-Jan-2012.)
𝑦𝐵    &   𝑦𝐶    &   ((𝜑𝑦𝐷) → 𝐴𝐷)    &   (𝑥 = 𝐴 → (𝜓𝜒))    &   (𝑦 = 𝐵𝐴 = 𝐶)       ((𝜑𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜓} ↔ 𝐵 ∈ {𝑦𝐷𝜒}))
 
Theoremrabxfr 4816* Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.)
𝑦𝐵    &   𝑦𝐶    &   (𝑦𝐷𝐴𝐷)    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵𝐴 = 𝐶)       (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
 
Theoremreuxfr2d 4817* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 16-Jan-2012.) (Revised by NM, 16-Jun-2017.)
((𝜑𝑦𝐵) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃*𝑦𝐵 𝑥 = 𝐴)       (𝜑 → (∃!𝑥𝐵𝑦𝐵 (𝑥 = 𝐴𝜓) ↔ ∃!𝑦𝐵 𝜓))
 
Theoremreuxfr2 4818* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by NM, 16-Jun-2017.)
(𝑦𝐵𝐴𝐵)    &   (𝑥𝐵 → ∃*𝑦𝐵 𝑥 = 𝐴)       (∃!𝑥𝐵𝑦𝐵 (𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝐵 𝜑)
 
Theoremreuxfrd 4819* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhypd 4821 to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012.)
((𝜑𝑦𝐵) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃!𝑦𝐵 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐵 𝜒))
 
Theoremreuxfr 4820* Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 4822 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.)
(𝑦𝐵𝐴𝐵)    &   (𝑥𝐵 → ∃!𝑦𝐵 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃!𝑥𝐵 𝜑 ↔ ∃!𝑦𝐵 𝜓)
 
Theoremreuhypd 4821* A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 6541. (Contributed by NM, 16-Jan-2012.)
((𝜑𝑥𝐶) → 𝐵𝐶)    &   ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))       ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
 
Theoremreuhyp 4822* A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr 4820. (Contributed by NM, 15-Nov-2004.)
(𝑥𝐶𝐵𝐶)    &   ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))       (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
 
Theoremnfnid 4823 A setvar variable is not free from itself. The proof relies on dtru 4783, that is, it is not true in a one-element domain. (Contributed by Mario Carneiro, 8-Oct-2016.)
¬ 𝑥𝑥
 
Theoremnfcvb 4824 The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of in the obvious way. This theorem is not true in a one-element domain, because then 𝑥𝑦 and 𝑥𝑥 = 𝑦 will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.)
(𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
 
Theorempwuni 4825 A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
𝐴 ⊆ 𝒫 𝐴
 
TheoremdtruALT 4826* Alternate proof of dtru 4783 which requires more axioms but is shorter and may be easier to understand.

Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, theorem spcev 3273 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.)

¬ ∀𝑥 𝑥 = 𝑦
 
Theoremdtrucor 4827* Corollary of dtru 4783. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 4828. (Contributed by NM, 27-Jun-2002.)
𝑥 = 𝑦       𝑥𝑦
 
Theoremdtrucor2 4828 The theorem form of the deduction dtrucor 4827 leads to a contradiction, as mentioned in the "Wrong!" example at mmdeduction.html#bad. (Contributed by NM, 20-Oct-2007.)
(𝑥 = 𝑦𝑥𝑦)       (𝜑 ∧ ¬ 𝜑)
 
Theoremdvdemo1 4829* Demonstration of a theorem (scheme) that requires (meta)variables 𝑥 and 𝑦 to be distinct, but no others. It bundles the theorem schemes 𝑥(𝑥 = 𝑦𝑥𝑥) and 𝑥(𝑥 = 𝑦𝑦𝑥). Compare dvdemo2 4830. ("Bundles" is a term introduced by Raph Levien.) (Contributed by NM, 1-Dec-2006.)
𝑥(𝑥 = 𝑦𝑧𝑥)
 
Theoremdvdemo2 4830* Demonstration of a theorem (scheme) that requires (meta)variables 𝑥 and 𝑧 to be distinct, but no others. It bundles the theorem schemes 𝑥(𝑥 = 𝑥𝑧𝑥) and 𝑥(𝑥 = 𝑦𝑦𝑥). Compare dvdemo1 4829. (Contributed by NM, 1-Dec-2006.)
𝑥(𝑥 = 𝑦𝑧𝑥)
 
2.3.2  Derive the Axiom of Pairing
 
Theoremzfpair 4831 The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axpr 4832. Instead, use zfpair2 4834 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

{𝑥, 𝑦} ∈ V
 
Theoremaxpr 4832* Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr 4833 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)

𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
 
Axiomax-pr 4833* The Axiom of Pairing of ZF set theory. It was derived as theorem axpr 4832 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.)
𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
 
Theoremzfpair2 4834 Derive the abbreviated version of the Axiom of Pairing from ax-pr 4833. See zfpair 4831 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.)
{𝑥, 𝑦} ∈ V
 
Theoremsnex 4835 A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 4778. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) (Proof modification is discouraged.)
{𝐴} ∈ V
 
Theoremprex 4836 The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 4245), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993.)
{𝐴, 𝐵} ∈ V
 
TheoremelALT 4837* Alternate proof of el 4773, shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦 𝑥𝑦
 
TheoremdtruALT2 4838* Alternate proof of dtru 4783 using ax-pr 4833 instead of ax-pow 4769. (Contributed by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ ∀𝑥 𝑥 = 𝑦
 
Theoremsnelpwi 4839 A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
(𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
 
Theoremsnelpw 4840 A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
𝐴 ∈ V       (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
 
Theoremprelpw 4841 A pair of two sets belongs to the power class of a class containing those two sets and vice versa. (Contributed by AV, 8-Jan-2020.)
((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
 
Theoremprelpwi 4842 A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.)
((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)
 
Theoremrext 4843* A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
(∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
 
Theoremsspwb 4844 Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
(𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoremunipw 4845 A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
𝒫 𝐴 = 𝐴
 
Theoremuniv 4846 The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
V = V
 
Theorempwel 4847 Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
(𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)
 
Theorempwtr 4848 A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
(Tr 𝐴 ↔ Tr 𝒫 𝐴)
 
Theoremssextss 4849* An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
(𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremssext 4850* An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
(𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremnssss 4851* Negation of subclass relationship. Compare nss 3626. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
 
Theorempweqb 4852 Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
(𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵)
 
Theoremintid 4853* The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
𝐴 ∈ V        {𝑥𝐴𝑥} = {𝐴}
 
Theoremmoabex 4854 "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.)
(∃*𝑥𝜑 → {𝑥𝜑} ∈ V)
 
Theoremrmorabex 4855 Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.)
(∃*𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ∈ V)
 
Theoremeuabex 4856 The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
(∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
 
Theoremnnullss 4857* A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.)
(𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
 
Theoremexss 4858* Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
(∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
 
Theoremopex 4859 An ordered pair of classes is a set. Exercise 7 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴, 𝐵⟩ ∈ V
 
Theoremotex 4860 An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
𝐴, 𝐵, 𝐶⟩ ∈ V
 
Theoremelopg 4861 Characterization of the elements of an ordered pair. Closed form of elop 4862. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.)
((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
 
Theoremelop 4862 Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
 
TheoremelopOLD 4863 Obsolete version of elop 4862, with one extraneous hypothesis. Obsolete as of 25-Dec-2020 . (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 ∈ V    &   𝐶 ∈ V    &   𝐴 ∈ V       (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
 
Theoremopi1 4864 One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝐴} ∈ ⟨𝐴, 𝐵
 
Theoremopi2 4865 One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
 
Theoremopeluu 4866 Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))
 
Theoremop1stb 4867 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 5537 to extract the second member, op1sta 5535 for an alternate version, and op1st 7067 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
𝐴 ∈ V    &   𝐵 ∈ V        𝐴, 𝐵⟩ = 𝐴
 
2.3.3  Ordered pair theorem
 
Theoremopnz 4868 An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theoremopnzi 4869 An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ≠ ∅
 
Theoremopth1 4870 Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
 
Theoremopth 4871 The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremopthg 4872 Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremopth1g 4873 Equality of the first members of equal ordered pairs. Closed form of opth1 4870. (Contributed by AV, 14-Oct-2018.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶))
 
Theoremopthg2 4874 Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐶𝑉𝐷𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremopth2 4875 Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
𝐶 ∈ V    &   𝐷 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremopthneg 4876 Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
 
Theoremopthne 4877 Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷))
 
Theoremotth2 4878 Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝑅 ∈ V       (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
 
Theoremotth 4879 Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝑅 ∈ V       (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
 
Theoremotthg 4880 Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
 
Theoremeqvinop 4881* A variable introduction law for ordered pairs. Analogue of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
 
Theoremcopsexg 4882* Substitution of class 𝐴 for ordered pair 𝑥, 𝑦. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 25-Aug-2019.)
(𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
 
Theoremcopsex2t 4883* Closed theorem form of copsex2g 4884. (Contributed by NM, 17-Feb-2013.)
((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
 
Theoremcopsex2g 4884* Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
 
Theoremcopsex4g 4885* An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.)
(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → (𝜑𝜓))       (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ 𝜓))
 
Theorem0nelop 4886 A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
¬ ∅ ∈ ⟨𝐴, 𝐵
 
Theoremopeqex 4887 Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
(⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
 
Theoremoteqex2 4888 Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.)
(⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V))
 
Theoremoteqex 4889 Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V)))
 
Theoremopcom 4890 An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)
 
Theoremmoop2 4891* "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐵 ∈ V       ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
 
Theoremopeqsn 4892 Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴}))
 
Theoremopeqpr 4893 Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
 
Theoremsnopeqop 4894 Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}))
 
Theorempropeqop 4895 Equivalence for an ordered pair equal to a pair of ordered pairs. (Contributed by AV, 18-Sep-2020.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ⟨𝐸, 𝐹⟩ ↔ ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
 
Theorempropssopi 4896 If a pair of ordered pairs is a subset of an ordered pair, their first components are equal. (Contributed by AV, 20-Sep-2020.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ⊆ ⟨𝐸, 𝐹⟩ → 𝐴 = 𝐶)
 
Theoremmosubopt 4897* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
(∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
 
Theoremmosubop 4898* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
∃*𝑥𝜑       ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
 
Theoremeuop2 4899* Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.)
𝐴 ∈ V       (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
 
Theoremeuotd 4900* Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶 ∈ V)    &   (𝜑 → (𝜓 ↔ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)))       (𝜑 → ∃!𝑥𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >