HomeHome Metamath Proof Explorer
Theorem List (p. 42 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 4101-4200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelimdhyp 4101 Version of elimhyp 4096 where the hypothesis is deduced from the final antecedent. See divalg 14964 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.)
(𝜑𝜓)    &   (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜒))    &   (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃𝜒))    &   𝜃       𝜒
 
Theoremkeephyp 4102 Transform a hypothesis 𝜓 that we want to keep (but contains the same class variable 𝐴 used in the eliminated hypothesis) for use with the weak deduction theorem. (Contributed by NM, 15-May-1999.)
(𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜃))    &   (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜃))    &   𝜓    &   𝜒       𝜃
 
Theoremkeephyp2v 4103 Keep a hypothesis containing 2 class variables (for use with the weak deduction theorem dedth 4089). (Contributed by NM, 16-Apr-2005.)
(𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓𝜒))    &   (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒𝜃))    &   (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏𝜂))    &   (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂𝜃))    &   𝜓    &   𝜏       𝜃
 
Theoremkeephyp3v 4104 Keep a hypothesis containing 3 class variables. (Contributed by NM, 27-Sep-1999.)
(𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜌𝜒))    &   (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒𝜃))    &   (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃𝜏))    &   (𝐷 = if(𝜑, 𝐴, 𝐷) → (𝜂𝜁))    &   (𝑅 = if(𝜑, 𝐵, 𝑅) → (𝜁𝜎))    &   (𝑆 = if(𝜑, 𝐶, 𝑆) → (𝜎𝜏))    &   𝜌    &   𝜂       𝜏
 
Theoremkeepel 4105 Keep a membership hypothesis for weak deduction theorem, when special case 𝐵𝐶 is provable. (Contributed by NM, 14-Aug-1999.)
𝐴𝐶    &   𝐵𝐶       if(𝜑, 𝐴, 𝐵) ∈ 𝐶
 
Theoremifex 4106 Conditional operator existence. (Contributed by NM, 2-Sep-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       if(𝜑, 𝐴, 𝐵) ∈ V
 
Theoremifexg 4107 Conditional operator existence. (Contributed by NM, 21-Mar-2011.)
((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)
 
2.1.16  Power classes
 
Syntaxcpw 4108 Extend class notation to include power class. (The tilde in the Metamath token is meant to suggest the calligraphic font of the P.)
class 𝒫 𝐴
 
Theorempwjust 4109* Soundness justification theorem for df-pw 4110. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
{𝑥𝑥𝐴} = {𝑦𝑦𝐴}
 
Definitiondf-pw 4110* Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 = {3, 5, 7}, then 𝒫 𝐴 = {∅, {3}, {5}, {7}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}} (ex-pw 26678). We will later introduce the Axiom of Power Sets ax-pow 4769, which can be expressed in class notation per pwexg 4776. Still later we will prove, in hashpw 13083, that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 24-Jun-1993.)
𝒫 𝐴 = {𝑥𝑥𝐴}
 
Theorempweq 4111 Equality theorem for power class. (Contributed by NM, 21-Jun-1993.)
(𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)
 
Theorempweqi 4112 Equality inference for power class. (Contributed by NM, 27-Nov-2013.)
𝐴 = 𝐵       𝒫 𝐴 = 𝒫 𝐵
 
Theorempweqd 4113 Equality deduction for power class. (Contributed by NM, 27-Nov-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → 𝒫 𝐴 = 𝒫 𝐵)
 
Theoremelpw 4114 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.)
𝐴 ∈ V       (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
 
Theoremselpw 4115* Setvar variable membership in a power class (common case). See elpw 4114. (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝑥 ∈ 𝒫 𝐴𝑥𝐴)
 
Theoremelpwg 4116 Membership in a power class. Theorem 86 of [Suppes] p. 47. See also elpw2g 4754. (Contributed by NM, 6-Aug-2000.)
(𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
 
Theoremelpwi 4117 Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
(𝐴 ∈ 𝒫 𝐵𝐴𝐵)
 
Theoremelpwid 4118 An element of a power class is a subclass. Deduction form of elpwi 4117. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ 𝒫 𝐵)       (𝜑𝐴𝐵)
 
Theoremelelpwi 4119 If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
 
Theoremnfpw 4120 Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝑥𝐴       𝑥𝒫 𝐴
 
Theorempwidg 4121 Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐴𝑉𝐴 ∈ 𝒫 𝐴)
 
Theorempwid 4122 A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V       𝐴 ∈ 𝒫 𝐴
 
Theorempwss 4123* Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
(𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
2.1.17  Unordered and ordered pairs
 
Theoremsnjust 4124* Soundness justification theorem for df-sn 4126. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
{𝑥𝑥 = 𝐴} = {𝑦𝑦 = 𝐴}
 
Syntaxcsn 4125 Extend class notation to include singleton.
class {𝐴}
 
Definitiondf-sn 4126* Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 4138. (Contributed by NM, 21-Jun-1993.)
{𝐴} = {𝑥𝑥 = 𝐴}
 
Syntaxcpr 4127 Extend class notation to include unordered pair.
class {𝐴, 𝐵}
 
Definitiondf-pr 4128 Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. For example, 𝐴 ∈ {1, -1} → (𝐴↑2) = 1 (ex-pr 26679). They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 4211. For a more traditional definition, but requiring a dummy variable, see dfpr2 4143. (Contributed by NM, 21-Jun-1993.)
{𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
 
Syntaxctp 4129 Extend class notation to include unordered triplet.
class {𝐴, 𝐵, 𝐶}
 
Definitiondf-tp 4130 Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.)
{𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
 
Syntaxcop 4131 Extend class notation to include ordered pair.
class 𝐴, 𝐵
 
Definitiondf-op 4132* Definition of an ordered pair, equivalent to Kuratowski's definition {{𝐴}, {𝐴, 𝐵}} when the arguments are sets. Since the behavior of Kuratowski definition is not very useful for proper classes, we define it to be empty in this case (see opprc1 4363, opprc2 4364, and 0nelop 4886). For Kuratowski's actual definition when the arguments are sets, see dfop 4339. For the justifying theorem (for sets) see opth 4871. See dfopif 4337 for an equivalent formulation using the if operation.

Definition 9.1 of [Quine] p. 58 defines an ordered pair unconditionally as 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}, which has different behavior from our df-op 4132 when the arguments are proper classes. Ordinarily this difference is not important, since neither definition is meaningful in that case. Our df-op 4132 was chosen because it often makes proofs shorter by eliminating unnecessary sethood hypotheses.

There are other ways to define ordered pairs. The basic requirement is that two ordered pairs are equal iff their respective members are equal. In 1914 Norbert Wiener gave the first successful definition 𝐴, 𝐵_2 = {{{𝐴}, ∅}, {{𝐵}}}, justified by opthwiener 4901. This was simplified by Kazimierz Kuratowski in 1921 to our present definition. An even simpler definition 𝐴, 𝐵_3 = {𝐴, {𝐴, 𝐵}} is justified by opthreg 8398, but it requires the Axiom of Regularity for its justification and is not commonly used. A definition that also works for proper classes is 𝐴, 𝐵_4 = ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})), justified by opthprc 5089. If we restrict our sets to nonnegative integers, an ordered pair definition that involves only elementary arithmetic is provided by nn0opthi 12919. An ordered pair of real numbers can also be represented by a complex number as shown by cru 10889. Kuratowski's ordered pair definition is standard for ZFC set theory, but it is very inconvenient to use in New Foundations theory because it is not type-level; a common alternate definition in New Foundations is the definition from [Rosser] p. 281.

Since there are other ways to define ordered pairs, we discourage direct use of this definition so that most theorems won't depend on this particular construction; theorems will instead rely on dfopif 4337. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)

𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
 
Syntaxcotp 4133 Extend class notation to include ordered triple.
class 𝐴, 𝐵, 𝐶
 
Definitiondf-ot 4134 Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.)
𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
 
Theoremsneq 4135 Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.)
(𝐴 = 𝐵 → {𝐴} = {𝐵})
 
Theoremsneqi 4136 Equality inference for singletons. (Contributed by NM, 22-Jan-2004.)
𝐴 = 𝐵       {𝐴} = {𝐵}
 
Theoremsneqd 4137 Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐴} = {𝐵})
 
Theoremdfsn2 4138 Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
{𝐴} = {𝐴, 𝐴}
 
Theoremelsng 4139 There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
 
Theoremelsn 4140 There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
𝐴 ∈ V       (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)
 
Theoremvelsn 4141 There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.)
(𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
 
Theoremelsni 4142 There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.)
(𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
 
Theoremdfpr2 4143* Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
{𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
 
Theoremelprg 4144 A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
(𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
 
Theoremelpri 4145 If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.)
(𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
 
Theoremelpr 4146 A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
𝐴 ∈ V       (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
 
Theoremelpr2 4147 A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) (Proof shortened by JJ, 23-Jul-2021.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
 
Theoremelpr2OLD 4148 Obsolete proof of elpr2 4147 as of 23-Jul-2021. (Contributed by NM, 14-Oct-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
 
Theoremnelpri 4149 If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.)
𝐴𝐵    &   𝐴𝐶        ¬ 𝐴 ∈ {𝐵, 𝐶}
 
Theoremprneli 4150 If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using . (Contributed by David A. Wheeler, 10-May-2015.)
𝐴𝐵    &   𝐴𝐶       𝐴 ∉ {𝐵, 𝐶}
 
Theoremnelprd 4151 If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
(𝜑𝐴𝐵)    &   (𝜑𝐴𝐶)       (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
 
Theoremeldifpr 4152 Membership in a set with two elements removed. Similar to eldifsn 4260 and eldiftp 4175. (Contributed by Mario Carneiro, 18-Jul-2017.)
(𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
 
Theoremsnidg 4153 A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.)
(𝐴𝑉𝐴 ∈ {𝐴})
 
Theoremsnidb 4154 A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
(𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
 
Theoremsnid 4155 A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
𝐴 ∈ V       𝐴 ∈ {𝐴}
 
Theoremvsnid 4156 A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
𝑥 ∈ {𝑥}
 
Theoremelsn2g 4157 There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.)
(𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
 
Theoremelsn2 4158 There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.)
𝐵 ∈ V       (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)
 
Theoremnelsn 4159 If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.)
(𝐴𝐵 → ¬ 𝐴 ∈ {𝐵})
 
TheoremnelsnOLD 4160 Obsolete proof of nelsn 4159 as of 4-May-2021. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ¬ 𝐴 ∈ {𝐵})
 
Theoremrabeqsn 4161* Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.)
({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
 
Theoremrabsssn 4162* Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019.)
({𝑥𝑉𝜑} ⊆ {𝑋} ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
 
Theoremralsnsg 4163* Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
 
Theoremrexsns 4164* Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
(∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
 
Theoremralsng 4165* Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
 
Theoremrexsng 4166* Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
 
Theorem2ralsng 4167* Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑𝜒))
 
Theoremexsnrex 4168 There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
(∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})
 
Theoremralsn 4169* Convert a quantification over a singleton to a substitution. (Contributed by NM, 27-Apr-2009.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥 ∈ {𝐴}𝜑𝜓)
 
Theoremrexsn 4170* Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥 ∈ {𝐴}𝜑𝜓)
 
Theoremelpwunsn 4171 Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007.)
(𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)
 
Theoremeqoreldif 4172 An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020.) (Proof shortened by JJ, 23-Jul-2021.)
(𝐵𝐶 → (𝐴𝐶 ↔ (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
 
TheoremeqoreldifOLD 4173 Obsolete proof of eqoreldif 4172 as of 23-Jul-2021. (Contributed by AV, 25-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐵𝐶 → (𝐴𝐶 ↔ (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
 
Theoremeltpg 4174 Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
(𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
 
Theoremeldiftp 4175 Membership in a set with three elements removed. Similar to eldifsn 4260 and eldifpr 4152. (Contributed by David A. Wheeler, 22-Jul-2017.)
(𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
 
Theoremeltpi 4176 A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
(𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
 
Theoremeltp 4177 A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
𝐴 ∈ V       (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
 
Theoremdftp2 4178* Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
{𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)}
 
Theoremnfpr 4179 Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
𝑥𝐴    &   𝑥𝐵       𝑥{𝐴, 𝐵}
 
Theoremifpr 4180 Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
 
Theoremralprg 4181* Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
Theoremrexprg 4182* Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
Theoremraltpg 4183* Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
 
Theoremrextpg 4184* Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
 
Theoremralpr 4185* Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
 
Theoremrexpr 4186* Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
 
Theoremraltp 4187* Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
 
Theoremrextp 4188* Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
 
Theoremnfsn 4189 Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
𝑥𝐴       𝑥{𝐴}
 
Theoremcsbsng 4190 Distribute proper substitution through the singleton of a class. csbsng 4190 is derived from the virtual deduction proof csbsngVD 38151. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
 
Theoremcsbprg 4191 Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018.)
(𝐶𝑉𝐶 / 𝑥{𝐴, 𝐵} = {𝐶 / 𝑥𝐴, 𝐶 / 𝑥𝐵})
 
Theoremdisjsn 4192 Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
 
Theoremdisjsn2 4193 Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.)
(𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
 
Theoremdisjpr2 4194 The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Proof shortened by JJ, 23-Jul-2021.)
(((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
 
Theoremdisjpr2OLD 4195 Obsolete proof of disjpr2 4194 as of 23-Jul-2021. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
 
Theoremdisjprsn 4196 The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
 
Theoremsnprc 4197 The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.)
𝐴 ∈ V ↔ {𝐴} = ∅)
 
Theoremsnnzb 4198 A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.)
(𝐴 ∈ V ↔ {𝐴} ≠ ∅)
 
Theoremr19.12sn 4199* Special case of r19.12 3045 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 18-Mar-2020.)
(𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
 
Theoremrabsn 4200* Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
(𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >