HomeHome Metamath Proof Explorer
Theorem List (p. 4 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 301-400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3bitr3g 301 More general version of 3bitr3i 289. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
(𝜑 → (𝜓𝜒))    &   (𝜓𝜃)    &   (𝜒𝜏)       (𝜑 → (𝜃𝜏))
 
Theorem3bitr4g 302 More general version of 3bitr4i 291. Useful for converting definitions in a formula. (Contributed by NM, 11-May-1993.)
(𝜑 → (𝜓𝜒))    &   (𝜃𝜓)    &   (𝜏𝜒)       (𝜑 → (𝜃𝜏))
 
Theoremnotnotb 303 Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.)
(𝜑 ↔ ¬ ¬ 𝜑)
 
TheoremnotnotdOLD 304 Obsolete proof of notnotd 137 as of 27-Mar-2021. (Contributed by Jarvin Udandy, 2-Sep-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑𝜓)       (𝜑 → ¬ ¬ 𝜓)
 
Theoremcon34b 305 A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.)
((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
 
Theoremcon4bid 306 A contraposition deduction. (Contributed by NM, 21-May-1994.)
(𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))       (𝜑 → (𝜓𝜒))
 
Theoremnotbid 307 Deduction negating both sides of a logical equivalence. (Contributed by NM, 21-May-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))
 
Theoremnotbi 308 Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.)
((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
 
Theoremnotbii 309 Negate both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.)
(𝜑𝜓)       𝜑 ↔ ¬ 𝜓)
 
Theoremcon4bii 310 A contraposition inference. (Contributed by NM, 21-May-1994.)
𝜑 ↔ ¬ 𝜓)       (𝜑𝜓)
 
Theoremmtbi 311 An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
¬ 𝜑    &   (𝜑𝜓)        ¬ 𝜓
 
Theoremmtbir 312 An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.)
¬ 𝜓    &   (𝜑𝜓)        ¬ 𝜑
 
Theoremmtbid 313 A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
(𝜑 → ¬ 𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → ¬ 𝜒)
 
Theoremmtbird 314 A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 10-May-1994.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → (𝜓𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremmtbii 315 An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
¬ 𝜓    &   (𝜑 → (𝜓𝜒))       (𝜑 → ¬ 𝜒)
 
Theoremmtbiri 316 An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.)
¬ 𝜒    &   (𝜑 → (𝜓𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremsylnib 317 A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
(𝜑 → ¬ 𝜓)    &   (𝜓𝜒)       (𝜑 → ¬ 𝜒)
 
Theoremsylnibr 318 A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
(𝜑 → ¬ 𝜓)    &   (𝜒𝜓)       (𝜑 → ¬ 𝜒)
 
Theoremsylnbi 319 A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
(𝜑𝜓)    &   𝜓𝜒)       𝜑𝜒)
 
Theoremsylnbir 320 A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)
(𝜓𝜑)    &   𝜓𝜒)       𝜑𝜒)
 
Theoremxchnxbi 321 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
𝜑𝜓)    &   (𝜑𝜒)       𝜒𝜓)
 
Theoremxchnxbir 322 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
𝜑𝜓)    &   (𝜒𝜑)       𝜒𝜓)
 
Theoremxchbinx 323 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
(𝜑 ↔ ¬ 𝜓)    &   (𝜓𝜒)       (𝜑 ↔ ¬ 𝜒)
 
Theoremxchbinxr 324 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
(𝜑 ↔ ¬ 𝜓)    &   (𝜒𝜓)       (𝜑 ↔ ¬ 𝜒)
 
Theoremimbi2i 325 Introduce an antecedent to both sides of a logical equivalence. This and the next three rules are useful for building up wff's around a definition, in order to make use of the definition. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.)
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))
 
Theorembibi2i 326 Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.)
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))
 
Theorembibi1i 327 Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))
 
Theorembibi12i 328 The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
(𝜑𝜓)    &   (𝜒𝜃)       ((𝜑𝜒) ↔ (𝜓𝜃))
 
Theoremimbi2d 329 Deduction adding an antecedent to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
 
Theoremimbi1d 330 Deduction adding a consequent to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))
 
Theorembibi2d 331 Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
 
Theorembibi1d 332 Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))
 
Theoremimbi12d 333 Deduction joining two equivalences to form equivalence of implications. (Contributed by NM, 16-May-1993.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜏))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
 
Theorembibi12d 334 Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 26-May-1993.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜏))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
 
Theoremimbi12 335 Closed form of imbi12i 339. Was automatically derived from its "Virtual Deduction" version and Metamath's "minimize" command. (Contributed by Alan Sare, 18-Mar-2012.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))
 
Theoremimbi1 336 Theorem *4.84 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
 
Theoremimbi2 337 Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theoremimbi1i 338 Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.)
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremimbi12i 339 Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.)
(𝜑𝜓)    &   (𝜒𝜃)       ((𝜑𝜒) ↔ (𝜓𝜃))
 
Theorembibi1 340 Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
 
Theorembitr3 341 Closed nested implication form of bitr3i 265. Derived automatically from bitr3VD 38106. (Contributed by Alan Sare, 31-Dec-2011.)
((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
 
Theoremcon2bi 342 Contraposition. Theorem *4.12 of [WhiteheadRussell] p. 117. (Contributed by NM, 15-Apr-1995.) (Proof shortened by Wolf Lammen, 3-Jan-2013.)
((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))
 
Theoremcon2bid 343 A contraposition deduction. (Contributed by NM, 15-Apr-1995.)
(𝜑 → (𝜓 ↔ ¬ 𝜒))       (𝜑 → (𝜒 ↔ ¬ 𝜓))
 
Theoremcon1bid 344 A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
(𝜑 → (¬ 𝜓𝜒))       (𝜑 → (¬ 𝜒𝜓))
 
Theoremcon1bii 345 A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.)
𝜑𝜓)       𝜓𝜑)
 
Theoremcon2bii 346 A contraposition inference. (Contributed by NM, 12-Mar-1993.)
(𝜑 ↔ ¬ 𝜓)       (𝜓 ↔ ¬ 𝜑)
 
Theoremcon1b 347 Contraposition. Bidirectional version of con1 142. (Contributed by NM, 3-Jan-1993.)
((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑))
 
Theoremcon2b 348 Contraposition. Bidirectional version of con2 129. (Contributed by NM, 12-Mar-1993.)
((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
 
Theorembiimt 349 A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
(𝜑 → (𝜓 ↔ (𝜑𝜓)))
 
Theorempm5.5 350 Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
(𝜑 → ((𝜑𝜓) ↔ 𝜓))
 
Theorema1bi 351 Inference rule introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
𝜑       (𝜓 ↔ (𝜑𝜓))
 
Theoremmt2bi 352 A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
𝜑       𝜓 ↔ (𝜓 → ¬ 𝜑))
 
Theoremmtt 353 Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
𝜑 → (¬ 𝜓 ↔ (𝜓𝜑)))
 
Theoremimnot 354 If a proposition is false, then implying it is equivalent to being false. One of four theorems that can be used to simplify an implication (𝜑𝜓), the other ones being ax-1 6 (true consequent), pm2.21 119 (false antecedent), pm5.5 350 (true antecedent). (Contributed by Mario Carneiro, 26-Apr-2019.) (Proof shortened by Wolf Lammen, 26-May-2019.)
𝜓 → ((𝜑𝜓) ↔ ¬ 𝜑))
 
Theorempm5.501 355 Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
(𝜑 → (𝜓 ↔ (𝜑𝜓)))
 
Theoremibib 356 Implication in terms of implication and biconditional. (Contributed by NM, 31-Mar-1994.) (Proof shortened by Wolf Lammen, 24-Jan-2013.)
((𝜑𝜓) ↔ (𝜑 → (𝜑𝜓)))
 
Theoremibibr 357 Implication in terms of implication and biconditional. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 21-Dec-2013.)
((𝜑𝜓) ↔ (𝜑 → (𝜓𝜑)))
 
Theoremtbt 358 A wff is equivalent to its equivalence with a truth. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
𝜑       (𝜓 ↔ (𝜓𝜑))
 
Theoremnbn2 359 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
 
Theorembibif 360 Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
𝜓 → ((𝜑𝜓) ↔ ¬ 𝜑))
 
Theoremnbn 361 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
¬ 𝜑       𝜓 ↔ (𝜓𝜑))
 
Theoremnbn3 362 Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006.)
𝜑       𝜓 ↔ (𝜓 ↔ ¬ 𝜑))
 
Theorempm5.21im 363 Two propositions are equivalent if they are both false. Closed form of 2false 364. Equivalent to a biimpr 209-like version of the xor-connective. (Contributed by Wolf Lammen, 13-May-2013.)
𝜑 → (¬ 𝜓 → (𝜑𝜓)))
 
Theorem2false 364 Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
¬ 𝜑    &    ¬ 𝜓       (𝜑𝜓)
 
Theorem2falsed 365 Two falsehoods are equivalent (deduction rule). (Contributed by NM, 11-Oct-2013.)
(𝜑 → ¬ 𝜓)    &   (𝜑 → ¬ 𝜒)       (𝜑 → (𝜓𝜒))
 
Theorempm5.21ni 366 Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.)
(𝜑𝜓)    &   (𝜒𝜓)       𝜓 → (𝜑𝜒))
 
Theorempm5.21nii 367 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.)
(𝜑𝜓)    &   (𝜒𝜓)    &   (𝜓 → (𝜑𝜒))       (𝜑𝜒)
 
Theorempm5.21ndd 368 Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.)
(𝜑 → (𝜒𝜓))    &   (𝜑 → (𝜃𝜓))    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜒𝜃))
 
Theorembija 369 Combine antecedents into a single biconditional. This inference, reminiscent of ja 172, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 252 and pm5.21im 363). (Contributed by Wolf Lammen, 13-May-2013.)
(𝜑 → (𝜓𝜒))    &   𝜑 → (¬ 𝜓𝜒))       ((𝜑𝜓) → 𝜒)
 
Theorempm5.18 370 Theorem *5.18 of [WhiteheadRussell] p. 124. This theorem says that logical equivalence is the same as negated "exclusive-or." (Contributed by NM, 28-Jun-2002.) (Proof shortened by Andrew Salmon, 20-Jun-2011.) (Proof shortened by Wolf Lammen, 15-Oct-2013.)
((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))
 
Theoremxor3 371 Two ways to express "exclusive or." (Contributed by NM, 1-Jan-2006.)
(¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
 
Theoremnbbn 372 Move negation outside of biconditional. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 20-Sep-2013.)
((¬ 𝜑𝜓) ↔ ¬ (𝜑𝜓))
 
Theorembiass 373 Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805. Interestingly, this law was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 21-Sep-2013.)
(((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))
 
Theorempm5.19 374 Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.)
¬ (𝜑 ↔ ¬ 𝜑)
 
Theorembi2.04 375 Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.)
((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))
 
Theorempm5.4 376 Antecedent absorption implication. Theorem *5.4 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
((𝜑 → (𝜑𝜓)) ↔ (𝜑𝜓))
 
Theoremimdi 377 Distributive law for implication. Compare Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
 
Theorempm5.41 378 Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 12-Oct-2012.)
(((𝜑𝜓) → (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))
 
Theorempm4.8 379 Theorem *4.8 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑)
 
Theorempm4.81 380 Theorem *4.81 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑𝜑) ↔ 𝜑)
 
Theoremimim21b 381 Simplify an implication between two implications when the antecedent of the first is a consequence of the antecedent of the second. The reverse form is useful in producing the successor step in induction proofs. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Wolf Lammen, 14-Sep-2013.)
((𝜓𝜑) → (((𝜑𝜒) → (𝜓𝜃)) ↔ (𝜓 → (𝜒𝜃))))
 
1.2.6  Logical disjunction and conjunction

Here we define disjunction (logical 'or') (df-or 384) and conjunction (logical 'and') (df-an 385). We also define various rules for simplifying and applying them, e.g., olc 398, orc 399, and orcom 401.

 
Syntaxwo 382 Extend wff definition to include disjunction ('or').
wff (𝜑𝜓)
 
Syntaxwa 383 Extend wff definition to include conjunction ('and').
wff (𝜑𝜓)
 
Definitiondf-or 384 Define disjunction (logical 'or'). Definition of [Margaris] p. 49. When the left operand, right operand, or both are true, the result is true; when both sides are false, the result is false. For example, it is true that (2 = 3 ∨ 4 = 4) (ex-or 26670). After we define the constant true (df-tru 1478) and the constant false (df-fal 1481), we will be able to prove these truth table values: ((⊤ ∨ ⊤) ↔ ⊤) (truortru 1501), ((⊤ ∨ ⊥) ↔ ⊤) (truorfal 1502), ((⊥ ∨ ⊤) ↔ ⊤) (falortru 1503), and ((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1504).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute 𝜑𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 250. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-an 385), (wi 4), (df-nan 1440), and (df-xor 1457) . (Contributed by NM, 27-Dec-1992.)

((𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
Definitiondf-an 385 Define conjunction (logical 'and'). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1478) and the constant false (df-fal 1481), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1497), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1498), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1499), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1500).

Contrast with (df-or 384), (wi 4), (df-nan 1440), and (df-xor 1457) . (Contributed by NM, 5-Jan-1993.)

((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
 
Theorempm4.64 386 Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑𝜓) ↔ (𝜑𝜓))
 
Theorempm2.53 387 Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → (¬ 𝜑𝜓))
 
Theorempm2.54 388 Theorem *2.54 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑𝜓) → (𝜑𝜓))
 
Theoremori 389 Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.)
(𝜑𝜓)       𝜑𝜓)
 
Theoremorri 390 Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.)
𝜑𝜓)       (𝜑𝜓)
 
Theoremord 391 Deduce implication from disjunction. (Contributed by NM, 18-May-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (¬ 𝜓𝜒))
 
Theoremorrd 392 Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.)
(𝜑 → (¬ 𝜓𝜒))       (𝜑 → (𝜓𝜒))
 
Theoremjaoi 393 Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.)
(𝜑𝜓)    &   (𝜒𝜓)       ((𝜑𝜒) → 𝜓)
 
Theoremjaod 394 Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜒))       (𝜑 → ((𝜓𝜃) → 𝜒))
 
Theoremmpjaod 395 Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜒))    &   (𝜑 → (𝜓𝜃))       (𝜑𝜒)
 
Theoremorel1 396 Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
𝜑 → ((𝜑𝜓) → 𝜓))
 
Theoremorel2 397 Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
𝜑 → ((𝜓𝜑) → 𝜓))
 
Theoremolc 398 Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.)
(𝜑 → (𝜓𝜑))
 
Theoremorc 399 Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.)
(𝜑 → (𝜑𝜓))
 
Theorempm1.4 400 Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → (𝜓𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >