HomeHome Metamath Proof Explorer
Theorem List (p. 259 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 25801-25900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremuhgriedg0edg0 25801 A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 15-Dec-2020.)
(𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
 
Theoremuhgredgn0 25802 An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.)
((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
 
Theoremedguhgr 25803 An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.)
((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺))
 
Theoremuhgredgrnv 25804 An edge of a hypergraph contains only vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 4-Jun-2021.)
((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁𝐸) → 𝑁 ∈ (Vtx‘𝐺))
 
Theoremuhgredgss 25805 The set of edges of a hypergraph is a subset of the powerset of vertices without the empty set. (Contributed by AV, 29-Nov-2020.)
(𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
 
Theoremupgredgss 25806* The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.)
(𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
 
Theoremumgredgss 25807* The set of edges of a multigraph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 25-Nov-2020.)
(𝐺 ∈ UMGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (#‘𝑥) = 2})
 
Theoremedgupgr 25808 Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.)
((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2))
 
Theoremedgumgr 25809 Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020.)
((𝐺 ∈ UMGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐸) = 2))
 
Theoremuhgrvtxedgiedgb 25810* In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
 
Theoremupgredg 25811* For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
 
Theoremumgredg 25812* For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
 
Theoremumgrpredgav 25813 An edge of a multigraph always connects two vertices. Analogue of umgredgprv 25773. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 4243 or prprc2 4244, i.e. a loop), but 𝑀𝑉 or 𝑁𝑉 would not be true. (Contributed by AV, 27-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
 
Theoremupgredg2vtx 25814* For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})
 
Theoremupgredgpr 25815 If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴𝑈𝐵𝑊𝐴𝐵)) → {𝐴, 𝐵} = 𝐶)
 
Theoremumgredgne 25816 An edge of a multigraph always connects two different vertices. Analog of umgrnloopv 25772 resp. umgrnloop 25774. (Contributed by AV, 27-Nov-2020.)
𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → 𝑀𝑁)
 
Theoremumgrnloop2 25817 A multigraph has no loops. (Contributed by AV, 27-Oct-2020.) (Revised by AV, 30-Nov-2020.)
(𝐺 ∈ UMGraph → {𝑁, 𝑁} ∉ (Edg‘𝐺))
 
Theoremumgredgnlp 25818* An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ¬ ∃𝑣 𝐶 = {𝑣})
 
PART 17  GRAPH THEORY (DEPRECATED)



To give an overview of the definitions and terms used in the context of graph theory, a glossary is provided in the following, mainly according to definitions in [Bollobas] p. 1-8 or in [Diestel] p. 2-28. Although this glossary concentrates on undirected graphs, many of the concepts are also useful for directed graphs.

Basic kinds of graphs:

TermReferenceDefinitionRemarks
Undirected hypergraph df-uhgra 25821 an ordered pair 𝑉, 𝐸 of a set 𝑉 and a function 𝐸 into the powerset of 𝑉 (ran 𝐸 ⊆ (𝒫 𝑉)).
An element of 𝑉 is called "vertex", an element of ran 𝐸 is called "edge", the function 𝐸 is called the "edge-function" .
In this most general definition of a graph, an "edge" may connect three or more vertices with each other, see [Berge] p. 1.
In Wikipedia "Hypergraph", see https://en.wikipedia.org/wiki/Hypergraph (18-Jan-2020) such a hypergraph is called "non-simple hypergraph", "multiple hypergraph" or "multi-hypergraphs". According to Wikipedia "Incidence structure", see https://en.wikipedia.org/wiki/Incidence_structure (18-Jan-2020) "Each hypergraph [...] can be regarded as an incidence structure in which the [vertices] play the role of "points", the corresponding family of [edges] plays the role of "lines" and the incidence relation is set membership".

If a graph is represented by a class variable, e.g. 𝐺, the edges of this graph are often represented by the function value (Edges‘𝐺). If the graph is given as pair 𝑉, 𝐸, however, (Edges‘⟨𝑉, 𝐸⟩) or preferably (𝑉Edges𝐸) is only used to talk about edges more explicitly. Otherwise, ran 𝐸 is used, because this is much shorter.
Notice that by using (Edges‘𝐺) the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. Therefore, this representation will only be used for undirected simple graphs.
For the set of vertices, a function "Vertices" could have been defined analogously. But "( Vertices ` G )" would have been exactly the same as (1st𝐺), so the latter is used to denote the set of vertices if the graph is represented by a class variable.
Undirected simple hypergraph df-ushgra 25822 an ordered pair 𝑉, 𝐸 of a set 𝑉 and a one-to-one function 𝐸 into the powerset of 𝑉 (ran 𝐸 ⊆ (𝒫 𝑉)). See also Wikipedia "Hypergraph", https://en.wikipedia.org/wiki/Hypergraph (18-Jan-2020). This is how a "hypergraph" is defined in Section I.1 in [Bollobas] p. 7 or the definition in section 1.10 in [Diestel] p. 27. A simple hypergraph has at most one edge between the same vertices, hence a multigraph needs not to be a simple hypergraph.
According to [Berge] p. 1, "A simple hypergraph (or "Sperner family") is a hypergraph H = { E1, E2, ..., Em } such that Ei C_ Ej => i = j". By this definition, a simple hypergraph cannot contain the edges E1 = { v1 , v2 } and E2 = { v1, v2, v3 }, because E1 C_ E2, but 1 =/= 2.
Undirected multigraph df-umgra 25842 a graph 𝑉, 𝐸 such that 𝐸 is a function into the set of (proper or not proper) unordered pairs of 𝑉.A proper unordered pair contains two different elements, a not proper unordered pair contains two times the same element, so it is a singleton (see preqsn 4331).
According to the definition in Section I.1 in [Bollobas] p. 7, "In a multigraph both multiple edges [joining two vertices] and multiple loops [joining a vertex to itself] are allowed", or according to [Diestel] p. 28, "A multigraph is a pair (V,E) of disjoint sets (of vertices and edges) together with a map E -> V u. [V]^2 assigning to every edge either one or two vertices, its end.".
Undirected simple graph with loops df-uslgra 25861 a graph 𝑉, 𝐸 such that 𝐸 is a one-to-one function into the set of (proper or not proper) unordered pairs of 𝑉.This means that there is at most one edge between two vertices, and at most one loop from a vertex to itself.
Undirected simple graph without loops (in short "simple graph") df-usgra 25862 a graph 𝑉, 𝐸 such that 𝐸 is a one-to-one function into the set of (proper) unordered pairs of 𝑉.An ordered pair 𝑉, 𝐸 of two distinct sets 𝑉 and 𝐸 (the "usual" definition of a "graph", see, for example, the definition in section I.1 of [Bollobas] p. 1 or in section 1.1 of [Diestel] p. 2) can be identified with an undirected simple graph without loops by "indexing" the edges with themselves, see ausisusgra 25884.
Finite graph---a graph 𝑉, 𝐸 with finite sets 𝑉 and 𝐸.See definitions in [Bollobas] p. 1 or [Diestel] p. 2.
In simple graphs, 𝐸 is finite if 𝑉 is finite, see usgrafis 25944. The number of edges is limited by (𝑛C2) (or "𝑛 choose 2") with 𝑛 = (#‘𝑉), see usgramaxsize 26015. Analogously, the number of edges of an undirected simple graph with loops is limited by ((𝑛 + 1)C2). In multigraphs, however, 𝐸 can be infinite although 𝑉 is finite.
Graph of finite size---a graph 𝑉, 𝐸 with finite set 𝐸, i.e. with a finite number of edges.A graph can be of finite size although 𝑉 is infinite.


Terms and properties of graphs:
TermReferenceDefinitionRemarks
Edge joining (two) vertices --- An edge 𝑒 ∈ ran 𝐸 "joins" the vertices v1, v2, ... vn (𝑛 ∈ ℕ) if 𝑒 = { v1, v2, ... vn }. If 𝑛 = 1, 𝑒 = { v1 } is a "loop", if 𝑛 = 2, 𝑒 = { v1 , v2 } is an edge as it is usually defined, see definition in Section I.1 in [Bollobas] p. 1.
(Two) Endvertices of an edge see definition in Section I.1 in [Bollobas] p. 1. If an edge 𝑒 ∈ ran 𝐸 joins the vertices v1, v2, ... vn (𝑛 ∈ ℕ), then the vertices v1, v2, ... vn are called the "endvertices" of the edge 𝑒.
(Two) Adjacent vertices see definition in Section I.1 in [Bollobas] p. 1/2. The vertices v1, v2, ... vn (𝑛 ∈ ℕ) are "adjacent" if there is an edge e = { v1, v2, ... vn } joining these vertices. In this case, the vertices are "incident" with the edge e (see definition in Section I.1 in [Bollobas] p. 2) or "connected" by the edge e.
Edge ending at a vertex An edge 𝑒 ∈ ran 𝐸 is "ending" at a vertex 𝑣 if the vertex is an endvertex of the edge: 𝑣𝑒. In other words, the vertex 𝑣 is incident with the edge 𝑒.
(Two) Adjacent edges The edges e0, e1, ... en (𝑛 ∈ ℕ) are "adjacent" if they have exactly one common endvertex. Generalization of definition in Section I.1 in [Bollobas] p. 2.
Order of a graph see definition in Section I.1 in [Bollobas] p. 3 the "order" of a graph 𝑉, 𝐸 is the number of vertices in the graph ((#‘𝑉)).
Size of a graph see definition in Section I.1 in [Bollobas] p. 3 the "size" of a graph 𝑉, 𝐸 is the number of edges in the graph ((#‘𝐸)). Or, for simple graphs 𝐺: (#‘(Edges‘𝐺))).
Neighborhood of a vertex df-nbgra 25949 resp. definition in Section I.1 in [Bollobas] p. 3 A vertex connected with a vertex 𝑣 by an edge is called a "neighbor" of the vertex 𝑣. The set of neighbors of a vertex 𝑣 is called the "neighborhood" (or "open neighborhood") of the vertex 𝑣. The "closed neighborhood" is the union of the (open) neighborhood of the vertex 𝑣 with {𝑣}.
Degree of a vertex df-vdgr 26421 The "degree" of a vertex is the number of the edges ending at this vertex. In a simple graph, the degree of a vertex is the number of neighbors of this vertex, see definition in Section I.1 in [Bollobas] p. 3
Isolated vertex usgravd0nedg 26445 A vertex is called "isolated" if it is not an endvertex of any edge, thus having degree 0.
Universal vertex df-uvtx 25951 A vertex is called "universal" if it is connected with every other vertex of the graph by an edge, thus having degree (#‘𝑉).


Special kinds of graphs:
TermReferenceDefinitionRemarks
Complete graph df-cusgra 25950 A graph is called "complete" if each pair of vertices is connected by an edge. The size of a complete undirected simple graph of order 𝑛 is (𝑛C2) (or "𝑛 choose 2"), see cusgrasize 26006.
Empty graph umgra0 25854 and usgra0 25899 A graph is called "empty" if it has no edges.
Null graph usgra0v 25900 A graph is called the "null graph" if it has no vertices (and therefore also no edges).
Trivial graph usgra1v 25919 A graph is called the "trivial graph" if it has only one vertex and no edges.
Connected graph df-conngra 26198 resp. definition in Section I.1 in [Bollobas] p. 6 A graph is called "connected" if for each pair of vertices there is a path between these vertices.


For the terms "Path", "Walk", "Trail", "Circuit", "Cycle" see the remarks below and the definitions in Section I.1 in [Bollobas] p. 4-5.
 
17.1  Undirected graphs - basics
 
17.1.1  Undirected hypergraphs
 
Syntaxcuhg 25819 Extend class notation with undirected hypergraphs.
class UHGrph
 
Syntaxcushg 25820 Extend class notation with undirected simple hypergraphs.
class USHGrph
 
Definitiondf-uhgra 25821* Define the class of all undirected hypergraphs. An undirected hypergraph is a pair of a set and a function into the powerset of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017.)
UHGrph = {⟨𝑣, 𝑒⟩ ∣ 𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
 
Definitiondf-ushgra 25822* Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a pair of a set and an injective (one-to-one) function into the powerset of this set (the empty set excluded). (Contributed by AV, 19-Jan-2020.)
USHGrph = {⟨𝑣, 𝑒⟩ ∣ 𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})}
 
Theoremreluhgra 25823 The class of all undirected hypergraphs is a relation. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
Rel UHGrph
 
Theoremrelushgra 25824 The class of all undirected simple hypergraphs is a relation. (Contributed by AV, 19-Jan-2020.)
Rel USHGrph
 
Theoremuhgrav 25825 The classes of vertices and edges of an undirected hypergraph are sets. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
(𝑉 UHGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
 
Theoremuhgraopelvv 25826 An undirected hypergraph is a member in the universal class of ordered pairs. (Contributed by AV, 3-Jan-2020.)
(𝐺 ∈ UHGrph → 𝐺 ∈ (V × V))
 
Theoremisuhgra 25827 The property of being an undirected hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
((𝑉𝑊𝐸𝑋) → (𝑉 UHGrph 𝐸𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
 
Theoremuhgraf 25828 The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
(𝑉 UHGrph 𝐸𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
 
Theoremuhgrafun 25829 The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
(𝑉 UHGrph 𝐸 → Fun 𝐸)
 
Theoremisushgra 25830 The property of being an undirected simple hypergraph. (Contributed by AV, 3-Jan-2020.)
((𝑉𝑊𝐸𝑋) → (𝑉 USHGrph 𝐸𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
 
Theoremushgraf 25831 The edge function of an undirected simple hypergraph is a function into the power set of the set of vertices. (Contributed by AV, 19-Jan-2020.)
(𝑉 USHGrph 𝐸𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))
 
Theoremushgrauhgra 25832 An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.)
(𝑉 USHGrph 𝐸𝑉 UHGrph 𝐸)
 
Theoremuhgraop 25833 The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.)
((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGrph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
 
Theoremuhgrac 25834 The property of being an undirected hypergraph represented by a class. This representation is useful if the set of vertices and the edge function is/needs not to be known. (Contributed by AV, 1-Jan-2020.)
(𝐺 ∈ UHGrph → (2nd𝐺):dom (2nd𝐺)⟶(𝒫 (1st𝐺) ∖ {∅}))
 
Theoremuhgrass 25835 An edge is a subset of vertices, analogous to umgrass 25848. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
((𝑉 UHGrph 𝐸𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
 
Theoremuhgraeq12d 25836 Equality of hypergraphs. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝑉 UHGrph 𝐸𝑊 UHGrph 𝐹))
 
Theoremuhgrares 25837 A subgraph of a hypergraph (formed by removing some edges from the original graph) is a hypergraph, analogous to umgrares 25853. (Contributed by Alexander van der Vekens, 27-Dec-2017.)
(𝑉 UHGrph 𝐸𝑉 UHGrph (𝐸𝐴))
 
Theoremuhgra0 25838 The empty graph, with vertices but no edges, is a hypergraph, analogous to umgra0 25854. (Contributed by Alexander van der Vekens, 27-Dec-2017.)
(𝑉𝑊𝑉 UHGrph ∅)
 
Theoremuhgra0v 25839 The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.)
(∅ UHGrph 𝐸𝐸 = ∅)
 
Theoremuhgraun 25840 The union of two (undirected) hypergraphs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are hypergraphs, then 𝑉, 𝐸𝐹 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices), analogous to umgraun 25857. (Contributed by Alexander van der Vekens, 27-Dec-2017.)
(𝜑𝐸 Fn 𝐴)    &   (𝜑𝐹 Fn 𝐵)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑉 UHGrph 𝐸)    &   (𝜑𝑉 UHGrph 𝐹)       (𝜑𝑉 UHGrph (𝐸𝐹))
 
17.1.2  Undirected multigraphs
 
Syntaxcumg 25841 Extend class notation with undirected multigraphs.
class UMGrph
 
Definitiondf-umgra 25842* Define the class of all undirected multigraphs. A multigraph is a pair 𝑉, 𝐸 where 𝐸 is a function into subsets of 𝑉 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. (Contributed by Mario Carneiro, 11-Mar-2015.)
UMGrph = {⟨𝑣, 𝑒⟩ ∣ 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}}
 
Theoremrelumgra 25843 The class of all undirected multigraphs is a relation. (Contributed by Mario Carneiro, 11-Mar-2015.)
Rel UMGrph
 
Theoremisumgra 25844* The property of being an undirected multigraph. (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉𝑊𝐸𝑋) → (𝑉 UMGrph 𝐸𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
 
Theoremwrdumgra 25845* The property of being an undirected multigraph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉𝑊𝐸 ∈ Word 𝑋) → (𝑉 UMGrph 𝐸𝐸 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
 
Theoremumgraf2 25846* The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgraf 25847 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.)
(𝑉 UMGrph 𝐸𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
 
Theoremumgraf 25847* The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉 UMGrph 𝐸𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
 
Theoremumgrass 25848 An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉 UMGrph 𝐸𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
 
Theoremumgran0 25849 An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉 UMGrph 𝐸𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
 
Theoremumgrale 25850 An edge has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉 UMGrph 𝐸𝐸 Fn 𝐴𝐹𝐴) → (#‘(𝐸𝐹)) ≤ 2)
 
Theoremumgrafi 25851 An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉 UMGrph 𝐸𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
 
Theoremumgraex 25852* An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
((𝑉 UMGrph 𝐸𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
 
Theoremumgrares 25853 A subgraph of a graph (formed by removing some edges from the original graph) is a graph. (Contributed by Mario Carneiro, 12-Mar-2015.)
(𝑉 UMGrph 𝐸𝑉 UMGrph (𝐸𝐴))
 
Theoremumgra0 25854 The empty graph, with vertices but no edges, is a graph. (Contributed by Mario Carneiro, 12-Mar-2015.)
(𝑉𝑊𝑉 UMGrph ∅)
 
Theoremumgra1 25855 The graph with one edge. (Contributed by Mario Carneiro, 12-Mar-2015.)
(((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝑉 UMGrph {⟨𝐴, {𝐵, 𝐶}⟩})
 
Theoremumisuhgra 25856 An undirected multigraph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.)
(𝑉 UMGrph 𝐸𝑉 UHGrph 𝐸)
 
Theoremumgraun 25857 The union of two (undirected) multigraphs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are graphs, then 𝑉, 𝐸𝐹 is a graph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.)
(𝜑𝐸 Fn 𝐴)    &   (𝜑𝐹 Fn 𝐵)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑉 UMGrph 𝐸)    &   (𝜑𝑉 UMGrph 𝐹)       (𝜑𝑉 UMGrph (𝐸𝐹))
 
17.1.3  Undirected simple graphs
 
17.1.3.1  Undirected simple graphs - basics
 
Syntaxcuslg 25858 Extend class notation with undirected (simple) graphs with loops.
class USLGrph
 
Syntaxcusg 25859 Extend class notation with undirected (simple) graphs (without loops).
class USGrph
 
Syntaxcedg 25860 Extend class notation with the set of edges (of an undirected simple graph).
class Edges
 
Definitiondf-uslgra 25861* Define the class of all undirected simple graphs with loops. An undirected simple graph with loops is a special undirected multigraph 𝑉, 𝐸 where 𝐸 is an injective (one-to-one) function into subsets of 𝑉 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a multigraph, there is at most one edge between two vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
USLGrph = {⟨𝑣, 𝑒⟩ ∣ 𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}}
 
Definitiondf-usgra 25862* Define the class of all undirected simple graphs without loops. An undirected simple graph without loops is a special undirected simple graph 𝑉, 𝐸 where 𝐸 is an injective (one-to-one) function into subsets of 𝑉 of cardinality two, representing the two vertices incident to the edge. Such graphs are usually simply called "undirected graphs", so if only the term "undirected graph" is used, an undirected simple graph without loops is meant. Therefore, an undirected graph has no loops (edges a vertex to itself). (Contributed by Alexander van der Vekens, 10-Aug-2017.)
USGrph = {⟨𝑣, 𝑒⟩ ∣ 𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) = 2}}
 
Theoremreluslgra 25863 The class of all undirected simple graph with loops is a relation. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
Rel USLGrph
 
Theoremrelusgra 25864 The class of all undirected simple graph without loops is a relation. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
Rel USGrph
 
Definitiondf-edg 25865 Define the class of edges of a graph, see also definition ("E = E(G)") in section I.1 of [Bollobas] p. 1. This definition is very general: It defines edges for any ordered pairs as the range of its second component (which even needs not to be a function). Therefore, this definition could also be used for hypergraphs and multigraphs. In these cases, however, the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. Therefore, this definition should only be used for undirected simple graphs. (Contributed by AV, 1-Jan-2020.)
Edges = (𝑔 ∈ V ↦ ran (2nd𝑔))
 
Theoremuslgrav 25866 The classes of vertices and edges of an undirected simple graph with loops are sets. (Contributed by Alexander van der Vekens, 20-Aug-2017.)
(𝑉 USLGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
 
Theoremusgrav 25867 The classes of vertices and edges of an undirected simple graph without loops are sets. (Contributed by Alexander van der Vekens, 19-Aug-2017.)
(𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
 
Theoremedgval 25868 The edges of a graph. (Contributed by AV, 1-Jan-2020.)
(𝐺𝑉 → (Edges‘𝐺) = ran (2nd𝐺))
 
Theoremedgopval 25869 The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.)
((𝑉𝑊𝐸𝑋) → (Edges‘⟨𝑉, 𝐸⟩) = ran 𝐸)
 
Theoremedgov 25870 The edges of a graph, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 25869. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.)
((𝑉𝑊𝐸𝑋) → (𝑉Edges𝐸) = ran 𝐸)
 
Theoremedguslgra 25871 The edges of an undirected simple graph with loops. (Contributed by AV, 2-Jan-2020.)
(𝑉 USLGrph 𝐸 → (𝑉Edges𝐸) = ran 𝐸)
 
Theoremisuslgra 25872* The property of being an undirected simple graph with loops. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
((𝑉𝑊𝐸𝑋) → (𝑉 USLGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
 
Theoremisusgra 25873* The property of being an undirected simple graph without loops. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
((𝑉𝑊𝐸𝑋) → (𝑉 USGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2}))
 
Theoremuslgraf 25874* The edge function of an undirected simple graph with loops is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
(𝑉 USLGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
 
Theoremusgraf 25875* The edge function of an undirected simple graph without loops is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
(𝑉 USGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2})
 
Theoremisusgra0 25876* The property of being an undirected simple graph without loops. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
((𝑉𝑊𝐸𝑋) → (𝑉 USGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}))
 
Theoremusgraf0 25877* The edge function of an undirected simple graph without loops is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
(𝑉 USGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
 
Theoremusgrafun 25878 The edge function of an undirected simple graph without loops is a function. (Contributed by Alexander van der Vekens, 18-Aug-2017.)
(𝑉 USGrph 𝐸 → Fun 𝐸)
 
Theoremusgraop 25879* An undirected simple graph without loops represented as ordered pair with a one-to-one edge function. (Contributed by AV, 1-Jan-2020.)
(𝐺 ∈ USGrph → ∃𝑣𝑒(𝐺 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}))
 
Theoremusgrac 25880 An undirected simple graph represented by a class induces a representation as binary relation. (Contributed by AV, 1-Jan-2020.)
(𝐺 ∈ USGrph → (1st𝐺) USGrph (2nd𝐺))
 
Theoremedgss 25881* The set of edges of an undirected simple graph without loops is a subset of the set of unordered pairs of vertices. (Contributed by AV, 1-Jan-2020.)
(𝐺 ∈ USGrph → (Edges‘𝐺) ⊆ {𝑥 ∈ 𝒫 (1st𝐺) ∣ (#‘𝑥) = 2})
 
Theoremedg 25882 An edge of an undirected simple graph without loops is an unordered pair of vertices. (Contributed by AV, 1-Jan-2020.)
((𝐺 ∈ USGrph ∧ 𝐸 ∈ (Edges‘𝐺)) → (𝐸 ∈ 𝒫 (1st𝐺) ∧ (#‘𝐸) = 2))
 
Theoremisausgra 25883* The property of an unordered pair to be an alternatively defined undirected simple graph without loops (defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.)
𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}}       ((𝑉𝑊𝐸𝑋) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}))
 
Theoremausisusgra 25884* The equivalence of the definitions of an undirected simple graph without loops. (Contributed by Alexander van der Vekens, 28-Aug-2017.)
𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}}       ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸𝑉 USGrph ( I ↾ 𝐸)))
 
Theoremausisusgraedg 25885* The equivalence of the definitions of an undirected simple graph without loops, expressed with the set of edges. (Contributed by AV, 2-Jan-2020.)
𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}}       ((𝑉𝑊𝐸𝑋) → (𝑉𝐺(𝑉Edges𝐸) ↔ 𝑉 USGrph ( I ↾ ran 𝐸)))
 
Theoremusgraedgop 25886 An edge of an undirected simple graph as second component of an ordered pair. (Contributed by Alexander van der Vekens, 17-Aug-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.)
((𝑉 USGrph 𝐸𝑋 ∈ dom 𝐸) → ((𝐸𝑋) = {𝑀, 𝑁} ↔ ⟨𝑋, {𝑀, 𝑁}⟩ ∈ 𝐸))
 
Theoremusgraf1o 25887 The edge function of an undirected simple graph without loops is a bijective function onto its range. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
(𝑉 USGrph 𝐸𝐸:dom 𝐸1-1-onto→ran 𝐸)
 
Theoremuslgraf1oedg 25888 The edge function of an undirected simple graph with loops is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.)
(𝑉 USLGrph 𝐸𝐸:dom 𝐸1-1-onto→(𝑉Edges𝐸))
 
Theoremusgraf1 25889 The edge function of an undirected simple graph without loops is a one to one function. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
(𝑉 USGrph 𝐸𝐸:dom 𝐸1-1→ran 𝐸)
 
Theoremusgrass 25890 An edge is a subset of vertices, analogous to umgrass 25848. (Contributed by Alexander van der Vekens, 19-Aug-2017.)
((𝑉 USGrph 𝐸𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
 
Theoremusgraeq12d 25891 Equality of simple graphs without loops. (Contributed by Alexander van der Vekens, 11-Aug-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝑉 USGrph 𝐸𝑊 USGrph 𝐹))
 
Theoremuslisushgra 25892 An undirected simple graph with loops is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.)
(𝑉 USLGrph 𝐸𝑉 USHGrph 𝐸)
 
Theoremuslisumgra 25893 An undirected simple graph with loops is an undirected multigraph. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
(𝑉 USLGrph 𝐸𝑉 UMGrph 𝐸)
 
Theoremusisuslgra 25894 An undirected simple graph without loops is an undirected simple graph with loops. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Proof shortened by Alexander van der Vekens, 20-Mar-2018.)
(𝑉 USGrph 𝐸𝑉 USLGrph 𝐸)
 
Theoremusisumgra 25895 An undirected simple graph without loops is an undirected multigraph. (Contributed by Alexander van der Vekens, 20-Aug-2017.)
(𝑉 USGrph 𝐸𝑉 UMGrph 𝐸)
 
Theoremusisuhgra 25896 An undirected simple graph without loops is an undirected hypergraph. (Contributed by Alexander van der Vekens, 9-Feb-2018.)
(𝑉 USGrph 𝐸𝑉 UHGrph 𝐸)
 
Theoremelusuhgra 25897 An undirected simple graph without loops is an undirected hypergraph. (Contributed by AV, 9-Jan-2020.)
(𝐺 ∈ USGrph → 𝐺 ∈ UHGrph )
 
Theoremusgrares 25898 A subgraph of a graph (formed by removing some edges from the original graph) is a graph, analogous to umgrares 25853. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
(𝑉 USGrph 𝐸𝑉 USGrph (𝐸𝐴))
 
Theoremusgra0 25899 The empty graph, with vertices but no edges, is a graph, analogous to umgra0 25854. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Proof shortened by AV, 25-Nov-2020.)
(𝑉𝑊𝑉 USGrph ∅)
 
Theoremusgra0v 25900 The empty graph with no vertices is a graph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 30-Sep-2017.)
(∅ USGrph 𝐸𝐸 = ∅)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >