HomeHome Metamath Proof Explorer
Theorem List (p. 166 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 16501-16600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhomarcl 16501 Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
 
Theoremhomafval 16502* Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)       (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
 
Theoremhomaf 16503 Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)       (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
 
Theoremhomaval 16504 Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
 
Theoremelhoma 16505 Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
 
Theoremelhomai 16506 Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐽𝑌))       (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)
 
Theoremelhomai2 16507 Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐽𝑌))       (𝜑 → ⟨𝑋, 𝑌, 𝐹⟩ ∈ (𝑋𝐻𝑌))
 
Theoremhomarcl2 16508 Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))
 
Theoremhomarel 16509 An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       Rel (𝑋𝐻𝑌)
 
Theoremhoma1 16510 The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)
 
Theoremhomahom2 16511 The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐽 = (Hom ‘𝐶)       (𝑍(𝑋𝐻𝑌)𝐹𝐹 ∈ (𝑋𝐽𝑌))
 
Theoremhomahom 16512 The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐽 = (Hom ‘𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋𝐽𝑌))
 
Theoremhomadm 16513 The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
 
Theoremhomacd 16514 The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
 
Theoremhomadmcd 16515 Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
 
Theoremarwval 16516 The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐻 = (Homa𝐶)       𝐴 = ran 𝐻
 
Theoremarwrcl 16517 The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)       (𝐹𝐴𝐶 ∈ Cat)
 
Theoremarwhoma 16518 An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐻 = (Homa𝐶)       (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
 
Theoremhomarw 16519 A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐻 = (Homa𝐶)       (𝑋𝐻𝑌) ⊆ 𝐴
 
Theoremarwdm 16520 The domain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (𝐹𝐴 → (doma𝐹) ∈ 𝐵)
 
Theoremarwcd 16521 The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (𝐹𝐴 → (coda𝐹) ∈ 𝐵)
 
Theoremdmaf 16522 The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (doma𝐴):𝐴𝐵
 
Theoremcdaf 16523 The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (coda𝐴):𝐴𝐵
 
Theoremarwhom 16524 The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐽 = (Hom ‘𝐶)       (𝐹𝐴 → (2nd𝐹) ∈ ((doma𝐹)𝐽(coda𝐹)))
 
Theoremarwdmcd 16525 Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)       (𝐹𝐴𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)
 
8.2.1  Identity and composition for arrows
 
Syntaxcida 16526 Extend class notation to include identity for arrows.
class Ida
 
Syntaxccoa 16527 Extend class notation to include composition for arrows.
class compa
 
Definitiondf-ida 16528* Definition of the identity arrow, which is just the identity morphism tagged with its domain and codomain. (Contributed by FL, 26-Oct-2007.) (Revised by Mario Carneiro, 11-Jan-2017.)
Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
 
Definitiondf-coa 16529* Definition of the composition of arrows. Since arrows are tagged with domain and codomain, this does not need to be a 5-ary operation like the regular composition in a category comp. Instead, it is a partial binary operation on arrows, which is defined when the domain of the first arrow matches the codomain of the second. (Contributed by Mario Carneiro, 11-Jan-2017.)
compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
 
Theoremidafval 16530* Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &    1 = (Id‘𝐶)       (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
 
Theoremidaval 16531 Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &    1 = (Id‘𝐶)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
 
Theoremida2 16532 Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &    1 = (Id‘𝐶)    &   (𝜑𝑋𝐵)       (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))
 
Theoremidahom 16533 Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝐻 = (Homa𝐶)       (𝜑 → (𝐼𝑋) ∈ (𝑋𝐻𝑋))
 
Theoremidadm 16534 Domain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)       (𝜑 → (doma‘(𝐼𝑋)) = 𝑋)
 
Theoremidacd 16535 Codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)       (𝜑 → (coda‘(𝐼𝑋)) = 𝑋)
 
Theoremidaf 16536 The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐴 = (Arrow‘𝐶)       (𝜑𝐼:𝐵𝐴)
 
Theoremcoafval 16537* The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)    &    = (comp‘𝐶)        · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
 
Theoremeldmcoa 16538 A pair 𝐺, 𝐹 is in the domain of the arrow composition, if the domain of 𝐺 equals the codomain of 𝐹. (In this case we say 𝐺 and 𝐹 are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)       (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
 
Theoremdmcoass 16539 The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)       dom · ⊆ (𝐴 × 𝐴)
 
Theoremhomdmcoa 16540 If 𝐹:𝑋𝑌 and 𝐺:𝑌𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑𝐺dom · 𝐹)
 
Theoremcoaval 16541 Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &    = (comp‘𝐶)       (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
 
Theoremcoa2 16542 The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &    = (comp‘𝐶)       (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹)))
 
Theoremcoahom 16543 The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
 
Theoremcoapm 16544 Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)        · ∈ (𝐴pm (𝐴 × 𝐴))
 
Theoremarwlid 16545 Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &    · = (compa𝐶)    &    1 = (Ida𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)
 
Theoremarwrid 16546 Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &    · = (compa𝐶)    &    1 = (Ida𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)
 
Theoremarwass 16547 Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &    · = (compa𝐶)    &    1 = (Ida𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &   (𝜑𝐾 ∈ (𝑍𝐻𝑊))       (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))
 
8.3  Examples of categories
 
8.3.1  The category of sets
 
Syntaxcsetc 16548 Extend class notation to include the category Set.
class SetCat
 
Definitiondf-setc 16549* Definition of the category Set, relativized to a subset 𝑢. Example 3.3(1) of [Adamek] p. 22. This is the category of all sets in 𝑢 and functions between these sets. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by FL, 8-Nov-2013.) (Revised by Mario Carneiro, 3-Jan-2017.)
SetCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦𝑚 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧𝑚 (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑𝑚 (1st𝑣)) ↦ (𝑔𝑓)))⟩})
 
Theoremsetcval 16550* Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦𝑚 𝑥)))    &   (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧𝑚 (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑𝑚 (1st𝑣)) ↦ (𝑔𝑓))))       (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
 
Theoremsetcbas 16551 Set of objects of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)       (𝜑𝑈 = (Base‘𝐶))
 
Theoremsetchomfval 16552* Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦𝑚 𝑥)))
 
Theoremsetchom 16553 Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)       (𝜑 → (𝑋𝐻𝑌) = (𝑌𝑚 𝑋))
 
Theoremelsetchom 16554 A morphism of sets is a function. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)       (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹:𝑋𝑌))
 
Theoremsetccofval 16555* Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)       (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧𝑚 (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑𝑚 (1st𝑣)) ↦ (𝑔𝑓))))
 
Theoremsetcco 16556 Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   (𝜑𝑍𝑈)    &   (𝜑𝐹:𝑋𝑌)    &   (𝜑𝐺:𝑌𝑍)       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
 
Theoremsetccatid 16557* Lemma for setccat 16558. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)       (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ 𝑥))))
 
Theoremsetccat 16558 The category of sets is a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)       (𝑈𝑉𝐶 ∈ Cat)
 
Theoremsetcid 16559 The identity arrow in the category of sets is the identity function. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &    1 = (Id‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)       (𝜑 → ( 1𝑋) = ( I ↾ 𝑋))
 
Theoremsetcmon 16560 A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   𝑀 = (Mono‘𝐶)       (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))
 
Theoremsetcepi 16561 An epimorphism of sets is a surjection. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   𝐸 = (Epi‘𝐶)    &   (𝜑 → 2𝑜𝑈)       (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ 𝐹:𝑋onto𝑌))
 
Theoremsetcsect 16562 A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
 
Theoremsetcinv 16563 An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   𝑁 = (Inv‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
 
Theoremsetciso 16564 An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))
 
Theoremresssetc 16565 The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   𝐷 = (SetCat‘𝑉)    &   (𝜑𝑈𝑊)    &   (𝜑𝑉𝑈)       (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
 
Theoremfuncsetcres2 16566 A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017.)
𝐶 = (SetCat‘𝑈)    &   𝐷 = (SetCat‘𝑉)    &   (𝜑𝑈𝑊)    &   (𝜑𝑉𝑈)       (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
 
8.3.2  The category of categories
 
Syntaxccatc 16567 Extend class notation to include the category Cat.
class CatCat
 
Definitiondf-catc 16568* Definition of the category Cat, which consists of all categories in the universe 𝑢 (i.e. "small categories", see definition 3.44. of [Adamek] p. 39), with functors as the morphisms. Definition 3.47 of [Adamek] p. 40. (Contributed by Mario Carneiro, 3-Jan-2017.)
CatCat = (𝑢 ∈ V ↦ (𝑢 ∩ Cat) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
 
Theoremcatcval 16569* Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (𝑈 ∩ Cat))    &   (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))    &   (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))       (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
 
Theoremcatcbas 16570 Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)       (𝜑𝐵 = (𝑈 ∩ Cat))
 
Theoremcatchomfval 16571* Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
 
Theoremcatchom 16572 Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐻𝑌) = (𝑋 Func 𝑌))
 
Theoremcatccofval 16573* Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)       (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
 
Theoremcatcco 16574 Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋 Func 𝑌))    &   (𝜑𝐺 ∈ (𝑌 Func 𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺func 𝐹))
 
Theoremcatccatid 16575* Lemma for catccat 16577. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)       (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ (idfunc𝑥))))
 
Theoremcatcid 16576 The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &    1 = (Id‘𝐶)    &   𝐼 = (idfunc𝑋)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)       (𝜑 → ( 1𝑋) = 𝐼)
 
Theoremcatccat 16577 The category of categories is a category, see remark 3.48 in [Adamek] p. 40. (Clearly it cannot be an element of itself, hence it is "large" with respect to 𝑈.) (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐶 = (CatCat‘𝑈)       (𝑈𝑉𝐶 ∈ Cat)
 
Theoremresscatc 16578 The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐷 = (CatCat‘𝑉)    &   (𝜑𝑈𝑊)    &   (𝜑𝑉𝑈)       (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
 
Theoremcatcisolem 16579* Lemma for catciso 16580. (Contributed by Mario Carneiro, 29-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   𝑅 = (Base‘𝑋)    &   𝑆 = (Base‘𝑌)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Inv‘𝐶)    &   𝐻 = (𝑥𝑆, 𝑦𝑆((𝐹𝑥)𝐺(𝐹𝑦)))    &   (𝜑𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺)    &   (𝜑𝐹:𝑅1-1-onto𝑆)       (𝜑 → ⟨𝐹, 𝐺⟩(𝑋𝐼𝑌)⟨𝐹, 𝐻⟩)
 
Theoremcatciso 16580 A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. (Contributed by Mario Carneiro, 29-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   𝑅 = (Base‘𝑋)    &   𝑆 = (Base‘𝑌)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)))
 
Theoremcatcoppccl 16581 The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   𝑂 = (oppCat‘𝑋)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)    &   (𝜑𝑋𝐵)       (𝜑𝑂𝐵)
 
Theoremcatcfuccl 16582 The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   𝑄 = (𝑋 FuncCat 𝑌)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑𝑄𝐵)
 
8.3.3  The category of extensible structures

The "category of extensible structures" ExtStrCat is the category of all sets in a universe regarded as extensible structures and the functions between their base sets, see df-estrc 16586.

Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are all sets in a universe 𝑢, which can be an arbitrary set, see estrcbas 16588. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv 16584 we do not need to restrict the universe to sets which "have a base". The morphisms (or arrows) between two objects, i.e. sets from the universe, are the mappings between their base sets, see estrchomfval 16589, whereas the composition is the ordinary composition of functions, see estrccofval 16592 and estrcco 16593.

It is shown that the category of extensible structures ExtStrCat is actually a category, see estrccat 16596 with the identity function as identity arrow, see estrcid 16597.

In the following, some background information about the category of extensible structures is given, taken from the discussion in Github issue #1507 (see https://github.com/metamath/set.mm/issues/1507):

At the beginning, the categories of non-unital rings RngCat and unital rings RingCat were defined separately (as unordered triples of ordereds pairs, see dfrngc2 41764 and dfringc2 41810, but with special compositions). With this definitions, however, theorem rngcresringcat 41822 could not be proven, because the compositions were not compatible. Unfortunately, no precise definition of the composition within the category of rings could be found in the literature. In section 3.3 EXAMPLES, paragraph (2) of [Adamek] p. 22, however, a definition is given for "Grp", the category of groups: "The following constructs; i.e., categories of structured sets and structure-preserving functions between them (o will always be the composition of functions and idA will always be the identity function on A): ... (b) Grp with objects all groups and morphisms all homomorphisms between them." Therefore, the compositions should have been harmonized by using the composition of the category of sets SetCat, see df-setc 16549, which is the ordinary composition of functions. Analogously, categories of Rngs (and Rings) could have been shown to be restrictions resp. subcategories of the category of sets.

BJ and MC observed, however, that "... cat [cannot be used] to restrict the category Set to Ring, because the homs are different. Although Ring is a concrete category, a hom between rings R and S is a function (Base`R) --> (Base`S) with certain properties, unlike in Set where it is a function R --> S.". Therefore, MC suggested that "we could have an alternative version of the Set category consisting of extensible structures (in U) together with (A Hom B) := (Base`A) --> (Base`B). This category is not isomorphic to Set because different extensible structures can have the same base set, but it is equivalent to Set; the relevant functors are (U`A) = (Base`A), the forgetful functor, and (F`A) = { <. (Base`ndx), A >. }". This led to the current definition of ExtStrCat, see df-estrc 16586. The claimed equivalence is proven by equivestrcsetc 16615. Having a definition of a category of extensible structures, the categories of non-unital and unital rings can be defined as appropriate restrictions of the category of extensible structures, see df-rngc 41751 and df-ringc 41797.

In the same way, more subcategories could be provided, resulting in the following "inclusion chain" by proving theorems like rngcresringcat 41822, although the morphisms of the shown categories are different ( "->" means "is subcategory of"):

RingCat-> RngCat-> GrpCat -> MndCat -> MgmCat -> ExtStrCat

According to MC, "If we generalize from subcategories to embeddings, then we can even fit SetCat into the chain, equivalent to ExtStrCat at the end." As mentioned before, the equivalence of SetCat and ExtStrCat is proven by equivestrcsetc 16615. Furthermore, it can be shown that SetCat is embedded into ExtStrCat, see embedsetcestrc 16630.

Remark: equivestrcsetc 16615 as well as embedsetcestrc 16630 require that the index of the base set extractor is contained within the considered universe. This is ensured by assuming that the natural numbers are contained within the considered universe: ω ∈ 𝑈 (see wunndx 15711), but it would be currently sufficient to assume that 1 ∈ 𝑈, because the index value of the base set extractor is hard-coded as 1, see basendx 15751.

Some people, however, feel uncomfortable to say that a ring "is a" group (without mentioning the restriction to the addition, which is usually found in the literature, e.g. the definition of a ring in [Herstein] p. 126: "... Note that so far all we have said is that R is an abelian group under +.". The main argument against a ring being a group is the number of components/slots: usually, a group consists of (exactly!) two components (a base set and an operation), whereas a ring consists of (exactly!) three components (a base set and two operations). According to this "definition", a ring cannot be a group.

This is also an (unfortunately informal) argument for the category of rings not being a subcategory of the category of abelian groups in "Categories and Functors", Bodo Pareigis, Academic Press, New York, London, 1970: "A category A is called a subcategory of a category B if Ob(A) C_ Ob(B) and MorA(X,Y) C_ MorB(X,Y) for all X,Y e. Ob(A), if the composition of morphisms in A coincides with the composition of the same morphisms in B and if the identity of an object in A is also the identity of the same object viewed as an object in B. Then there is a forgetful functor from A to B. We note that Ri [the category of rings] is not a subcategory of Ab [the category of abelian groups]. In fact, Ob(Ri) C_ Ob(Ab) is not true, although every ring can also be regarded as an abelian group. The corresponding abelian groups of two rings may coincide even if the rings do not coincide. The multiplication may be defined differently.".

As long as we define Rings, Groups, etc. in a way that 𝐴 ∈ Ring → 𝐴 ∈ Grp is valid (see ringgrp 18375) the corresponding categories are in a subcategory relation. If we do not want Rings to be Groups (then the category of rings would not be a subcategory of the category of groups, as observed by Pareigis), we would have to change the definitions of Magmas, Monoids, Groups, Rings etc. to restrict them to have exactly the required number of slots, so that the following holds

𝑔 ∈ Grp → 𝑔 Struct ⟨(Base‘ndx), (+g‘ndx)⟩

𝑟 ∈ Ring → 𝑟 Struct ⟨(Base‘ndx), (+gndx ) , ( .r ndx)⟩

 
Theoremfncnvimaeqv 16583 The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
(𝐹 Fn V → (𝐹 “ V) = V)
 
Theorembascnvimaeqv 16584 The inverse image of the universal class V under the base function is the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
(Base “ V) = V
 
Syntaxcestrc 16585 Extend class notation to include the category ExtStr.
class ExtStrCat
 
Definitiondf-estrc 16586* Definition of the category ExtStr of extensible structures. This is the category whose objects are all sets in a universe 𝑢 regarded as extensible structures and whose morphisms are the functions between their base sets. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv 16584 we do not need to restrict the universe to sets which "have a base". Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Proposed by Mario Carneiro, 5-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
ExtStrCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩})
 
Theoremestrcval 16587* Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))    &   (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) ↦ (𝑔𝑓))))       (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
 
Theoremestrcbas 16588 Set of objects of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)       (𝜑𝑈 = (Base‘𝐶))
 
Theoremestrchomfval 16589* Set of morphisms ("arrows") of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
 
Theoremestrchom 16590 The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   𝐴 = (Base‘𝑋)    &   𝐵 = (Base‘𝑌)       (𝜑 → (𝑋𝐻𝑌) = (𝐵𝑚 𝐴))
 
Theoremelestrchom 16591 A morphism between extensible structures is a function between their base sets. (Contributed by AV, 7-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   𝐴 = (Base‘𝑋)    &   𝐵 = (Base‘𝑌)       (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹:𝐴𝐵))
 
Theoremestrccofval 16592* Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)       (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
 
Theoremestrcco 16593 Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   (𝜑𝑍𝑈)    &   𝐴 = (Base‘𝑋)    &   𝐵 = (Base‘𝑌)    &   𝐷 = (Base‘𝑍)    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐷)       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
 
Theoremestrcbasbas 16594 An element of the base set of the base set of the category of extensible structures (i.e. the base set of an extensible structure) belongs to the considered weak universe. (Contributed by AV, 22-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈 ∈ WUni)       ((𝜑𝐸𝐵) → (Base‘𝐸) ∈ 𝑈)
 
Theoremestrccatid 16595* Lemma for estrccat 16596. (Contributed by AV, 8-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)       (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ (Base‘𝑥)))))
 
Theoremestrccat 16596 The category of extensible structures is a category. (Contributed by AV, 8-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)       (𝑈𝑉𝐶 ∈ Cat)
 
Theoremestrcid 16597 The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &    1 = (Id‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)       (𝜑 → ( 1𝑋) = ( I ↾ (Base‘𝑋)))
 
Theoremestrchomfn 16598 The Hom-set operation in the category of extensible structures (in a universe) is a function. (Contributed by AV, 8-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐻 Fn (𝑈 × 𝑈))
 
Theoremestrchomfeqhom 16599 The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (Homf𝐶) = 𝐻)
 
Theoremestrreslem1 16600 Lemma 1 for estrres 16602. (Contributed by AV, 14-Mar-2020.)
(𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})    &   (𝜑𝐵𝑉)       (𝜑𝐵 = (Base‘𝐶))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >