HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr Structured version   Visualization version   GIF version

Theorem mdbr 28537
Description: Binary relation expressing 𝐴, 𝐵 is a modular pair. Definition 1.1 of [MaedaMaeda] p. 1. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 737 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 oveq2 6557 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥 𝑦) = (𝑥 𝐴))
43ineq1d 3775 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥 𝑦) ∩ 𝑧) = ((𝑥 𝐴) ∩ 𝑧))
5 ineq1 3769 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑧) = (𝐴𝑧))
65oveq2d 6565 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 (𝑦𝑧)) = (𝑥 (𝐴𝑧)))
74, 6eqeq12d 2625 . . . . . 6 (𝑦 = 𝐴 → (((𝑥 𝑦) ∩ 𝑧) = (𝑥 (𝑦𝑧)) ↔ ((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧))))
87imbi2d 329 . . . . 5 (𝑦 = 𝐴 → ((𝑥𝑧 → ((𝑥 𝑦) ∩ 𝑧) = (𝑥 (𝑦𝑧))) ↔ (𝑥𝑧 → ((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧)))))
98ralbidv 2969 . . . 4 (𝑦 = 𝐴 → (∀𝑥C (𝑥𝑧 → ((𝑥 𝑦) ∩ 𝑧) = (𝑥 (𝑦𝑧))) ↔ ∀𝑥C (𝑥𝑧 → ((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧)))))
102, 9anbi12d 743 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ ∀𝑥C (𝑥𝑧 → ((𝑥 𝑦) ∩ 𝑧) = (𝑥 (𝑦𝑧)))) ↔ ((𝐴C𝑧C ) ∧ ∀𝑥C (𝑥𝑧 → ((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧))))))
11 eleq1 2676 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1211anbi2d 736 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
13 sseq2 3590 . . . . . 6 (𝑧 = 𝐵 → (𝑥𝑧𝑥𝐵))
14 ineq2 3770 . . . . . . 7 (𝑧 = 𝐵 → ((𝑥 𝐴) ∩ 𝑧) = ((𝑥 𝐴) ∩ 𝐵))
15 ineq2 3770 . . . . . . . 8 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1615oveq2d 6565 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 (𝐴𝑧)) = (𝑥 (𝐴𝐵)))
1714, 16eqeq12d 2625 . . . . . 6 (𝑧 = 𝐵 → (((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧)) ↔ ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
1813, 17imbi12d 333 . . . . 5 (𝑧 = 𝐵 → ((𝑥𝑧 → ((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧))) ↔ (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
1918ralbidv 2969 . . . 4 (𝑧 = 𝐵 → (∀𝑥C (𝑥𝑧 → ((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧))) ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
2012, 19anbi12d 743 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ ∀𝑥C (𝑥𝑧 → ((𝑥 𝐴) ∩ 𝑧) = (𝑥 (𝐴𝑧)))) ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))))
21 df-md 28523 . . 3 𝑀 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ ∀𝑥C (𝑥𝑧 → ((𝑥 𝑦) ∩ 𝑧) = (𝑥 (𝑦𝑧))))}
2210, 20, 21brabg 4919 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))))
2322bianabs 920 1 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cin 3539  wss 3540   class class class wbr 4583  (class class class)co 6549   C cch 27170   chj 27174   𝑀 cmd 27207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-iota 5768  df-fv 5812  df-ov 6552  df-md 28523
This theorem is referenced by:  mdi  28538  mdbr2  28539  mdbr3  28540  dmdmd  28543  mddmd2  28552  mdsl1i  28564
  Copyright terms: Public domain W3C validator