MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfres Structured version   Visualization version   GIF version

Theorem mbfres 23217
Description: The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
mbfres ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ MblFn)

Proof of Theorem mbfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ref 13700 . . . 4 ℜ:ℂ⟶ℝ
2 simpr 476 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom vol)
3 ismbf1 23199 . . . . . . . . 9 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
43simplbi 475 . . . . . . . 8 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
54adantr 480 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
6 pmresg 7771 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → (𝐹𝐴) ∈ (ℂ ↑pm 𝐴))
72, 5, 6syl2anc 691 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ (ℂ ↑pm 𝐴))
8 cnex 9896 . . . . . . 7 ℂ ∈ V
9 elpm2g 7760 . . . . . . 7 ((ℂ ∈ V ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ (ℂ ↑pm 𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴)))
108, 2, 9sylancr 694 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ (ℂ ↑pm 𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴)))
117, 10mpbid 221 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴))
1211simpld 474 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴):dom (𝐹𝐴)⟶ℂ)
13 fco 5971 . . . 4 ((ℜ:ℂ⟶ℝ ∧ (𝐹𝐴):dom (𝐹𝐴)⟶ℂ) → (ℜ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
141, 12, 13sylancr 694 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
15 dmres 5339 . . . 4 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
16 id 22 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
17 mbfdm 23201 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
18 inmbl 23117 . . . . 5 ((𝐴 ∈ dom vol ∧ dom 𝐹 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol)
1916, 17, 18syl2anr 494 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol)
2015, 19syl5eqel 2692 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → dom (𝐹𝐴) ∈ dom vol)
21 resco 5556 . . . . . . . 8 ((ℜ ∘ 𝐹) ↾ 𝐴) = (ℜ ∘ (𝐹𝐴))
2221cnveqi 5219 . . . . . . 7 ((ℜ ∘ 𝐹) ↾ 𝐴) = (ℜ ∘ (𝐹𝐴))
2322imaeq1i 5382 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞))
24 cnvresima 5541 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
2523, 24eqtr3i 2634 . . . . 5 ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) = (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
26 mbff 23200 . . . . . . . . . 10 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
27 ismbfcn 23204 . . . . . . . . . 10 (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
2826, 27syl 17 . . . . . . . . 9 (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
2928ibi 255 . . . . . . . 8 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
3029simpld 474 . . . . . . 7 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹) ∈ MblFn)
31 fco 5971 . . . . . . . 8 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
321, 26, 31sylancr 694 . . . . . . 7 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
33 mbfima 23205 . . . . . . 7 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
3430, 32, 33syl2anc 691 . . . . . 6 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
35 inmbl 23117 . . . . . 6 ((((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
3634, 35sylan 487 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
3725, 36syl5eqel 2692 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
3837adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
3922imaeq1i 5382 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥))
40 cnvresima 5541 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
4139, 40eqtr3i 2634 . . . . 5 ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) = (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
42 mbfima 23205 . . . . . . 7 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
4330, 32, 42syl2anc 691 . . . . . 6 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
44 inmbl 23117 . . . . . 6 ((((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
4543, 44sylan 487 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
4641, 45syl5eqel 2692 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
4746adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
4814, 20, 38, 47ismbf2d 23214 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ ∘ (𝐹𝐴)) ∈ MblFn)
49 imf 13701 . . . 4 ℑ:ℂ⟶ℝ
50 fco 5971 . . . 4 ((ℑ:ℂ⟶ℝ ∧ (𝐹𝐴):dom (𝐹𝐴)⟶ℂ) → (ℑ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
5149, 12, 50sylancr 694 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
52 resco 5556 . . . . . . . 8 ((ℑ ∘ 𝐹) ↾ 𝐴) = (ℑ ∘ (𝐹𝐴))
5352cnveqi 5219 . . . . . . 7 ((ℑ ∘ 𝐹) ↾ 𝐴) = (ℑ ∘ (𝐹𝐴))
5453imaeq1i 5382 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞))
55 cnvresima 5541 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
5654, 55eqtr3i 2634 . . . . 5 ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) = (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
5729simprd 478 . . . . . . 7 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹) ∈ MblFn)
58 fco 5971 . . . . . . . 8 ((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
5949, 26, 58sylancr 694 . . . . . . 7 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
60 mbfima 23205 . . . . . . 7 (((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
6157, 59, 60syl2anc 691 . . . . . 6 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
62 inmbl 23117 . . . . . 6 ((((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
6361, 62sylan 487 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
6456, 63syl5eqel 2692 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
6564adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
6653imaeq1i 5382 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥))
67 cnvresima 5541 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
6866, 67eqtr3i 2634 . . . . 5 ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) = (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
69 mbfima 23205 . . . . . . 7 (((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
7057, 59, 69syl2anc 691 . . . . . 6 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
71 inmbl 23117 . . . . . 6 ((((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
7270, 71sylan 487 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
7368, 72syl5eqel 2692 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
7473adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
7551, 20, 65, 74ismbf2d 23214 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ ∘ (𝐹𝐴)) ∈ MblFn)
76 ismbfcn 23204 . . 3 ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ → ((𝐹𝐴) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐴)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐴)) ∈ MblFn)))
7712, 76syl 17 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐴)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐴)) ∈ MblFn)))
7848, 75, 77mpbir2and 959 1 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  wf 5800  (class class class)co 6549  pm cpm 7745  cc 9813  cr 9814  +∞cpnf 9950  -∞cmnf 9951  (,)cioo 12046  cre 13685  cim 13686  volcvol 23039  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194
This theorem is referenced by:  mbfadd  23234  mbfsub  23235  mbfmullem2  23297  mbfmul  23299  itg2cnlem1  23334  iblss  23377  mbfposadd  32627  ftc1cnnclem  32653  ftc1anclem8  32662
  Copyright terms: Public domain W3C validator