MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnen Structured version   Visualization version   GIF version

Theorem mapsnen 7920
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1 𝐴 ∈ V
mapsnen.2 𝐵 ∈ V
Assertion
Ref Expression
mapsnen (𝐴𝑚 {𝐵}) ≈ 𝐴

Proof of Theorem mapsnen
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . 2 (𝐴𝑚 {𝐵}) ∈ V
2 mapsnen.1 . 2 𝐴 ∈ V
3 fvex 6113 . . 3 (𝑧𝐵) ∈ V
43a1i 11 . 2 (𝑧 ∈ (𝐴𝑚 {𝐵}) → (𝑧𝐵) ∈ V)
5 snex 4835 . . 3 {⟨𝐵, 𝑤⟩} ∈ V
65a1i 11 . 2 (𝑤𝐴 → {⟨𝐵, 𝑤⟩} ∈ V)
7 mapsnen.2 . . . . . . 7 𝐵 ∈ V
82, 7mapsn 7785 . . . . . 6 (𝐴𝑚 {𝐵}) = {𝑧 ∣ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩}}
98abeq2i 2722 . . . . 5 (𝑧 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩})
109anbi1i 727 . . . 4 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
11 r19.41v 3070 . . . 4 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
12 df-rex 2902 . . . 4 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
1310, 11, 123bitr2i 287 . . 3 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
14 fveq1 6102 . . . . . . . . . 10 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = ({⟨𝐵, 𝑦⟩}‘𝐵))
15 vex 3176 . . . . . . . . . . 11 𝑦 ∈ V
167, 15fvsn 6351 . . . . . . . . . 10 ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦
1714, 16syl6eq 2660 . . . . . . . . 9 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = 𝑦)
1817eqeq2d 2620 . . . . . . . 8 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑤 = (𝑧𝐵) ↔ 𝑤 = 𝑦))
19 equcom 1932 . . . . . . . 8 (𝑤 = 𝑦𝑦 = 𝑤)
2018, 19syl6bb 275 . . . . . . 7 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑤 = (𝑧𝐵) ↔ 𝑦 = 𝑤))
2120pm5.32i 667 . . . . . 6 ((𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤))
2221anbi2i 726 . . . . 5 ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
23 anass 679 . . . . 5 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
24 ancom 465 . . . . 5 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
2522, 23, 243bitr2i 287 . . . 4 ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
2625exbii 1764 . . 3 (∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ ∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
27 vex 3176 . . . 4 𝑤 ∈ V
28 eleq1 2676 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
29 opeq2 4341 . . . . . . 7 (𝑦 = 𝑤 → ⟨𝐵, 𝑦⟩ = ⟨𝐵, 𝑤⟩)
3029sneqd 4137 . . . . . 6 (𝑦 = 𝑤 → {⟨𝐵, 𝑦⟩} = {⟨𝐵, 𝑤⟩})
3130eqeq2d 2620 . . . . 5 (𝑦 = 𝑤 → (𝑧 = {⟨𝐵, 𝑦⟩} ↔ 𝑧 = {⟨𝐵, 𝑤⟩}))
3228, 31anbi12d 743 . . . 4 (𝑦 = 𝑤 → ((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
3327, 32ceqsexv 3215 . . 3 (∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
3413, 26, 333bitri 285 . 2 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
351, 2, 4, 6, 34en2i 7879 1 (𝐴𝑚 {𝐵}) ≈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  Vcvv 3173  {csn 4125  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-en 7842
This theorem is referenced by:  map2xp  8015  mapdom3  8017  ackbij1lem5  8929  pwxpndom2  9366  hashmap  13082
  Copyright terms: Public domain W3C validator