Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltmod Structured version   Visualization version   GIF version

Theorem ltmod 38705
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltmod.a (𝜑𝐴 ∈ ℝ)
ltmod.b (𝜑𝐵 ∈ ℝ+)
ltmod.c (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
Assertion
Ref Expression
ltmod (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))

Proof of Theorem ltmod
StepHypRef Expression
1 ltmod.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2 ltmod.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
31, 2modcld 12536 . . . . . . 7 (𝜑 → (𝐴 mod 𝐵) ∈ ℝ)
41, 3resubcld 10337 . . . . . 6 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ)
51rexrd 9968 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
6 icossre 12125 . . . . . 6 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
74, 5, 6syl2anc 691 . . . . 5 (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
8 ltmod.c . . . . 5 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
97, 8sseldd 3569 . . . 4 (𝜑𝐶 ∈ ℝ)
102rpred 11748 . . . . 5 (𝜑𝐵 ∈ ℝ)
119, 2rerpdivcld 11779 . . . . . . 7 (𝜑 → (𝐶 / 𝐵) ∈ ℝ)
1211flcld 12461 . . . . . 6 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ)
1312zred 11358 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
1410, 13remulcld 9949 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ)
154rexrd 9968 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*)
16 icoltub 38579 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴)
1715, 5, 8, 16syl3anc 1318 . . . 4 (𝜑𝐶 < 𝐴)
189, 1, 14, 17ltsub1dd 10518 . . 3 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
19 icossicc 12131 . . . . . . . 8 ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)
2019, 8sseldi 3566 . . . . . . 7 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
211, 2, 20lefldiveq 38446 . . . . . 6 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))
2221eqcomd 2616 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵)))
2322oveq2d 6565 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
2423oveq2d 6565 . . 3 (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
2518, 24breqtrd 4609 . 2 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
26 modval 12532 . . 3 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
279, 2, 26syl2anc 691 . 2 (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
28 modval 12532 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
291, 2, 28syl2anc 691 . 2 (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
3025, 27, 293brtr4d 4615 1 (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814   · cmul 9820  *cxr 9952   < clt 9953  cmin 10145   / cdiv 10563  +crp 11708  [,)cico 12048  [,]cicc 12049  cfl 12453   mod cmo 12530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fl 12455  df-mod 12531
This theorem is referenced by:  fouriersw  39124
  Copyright terms: Public domain W3C validator