MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Structured version   Visualization version   GIF version

Theorem ltexprlem6 9742
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem6
Dummy variables 𝑧 𝑤 𝑣 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem5 9741 . . . . 5 ((𝐵P𝐴𝐵) → 𝐶P)
3 df-plp 9684 . . . . . 6 +P = (𝑧P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑧𝑦 𝑓 = (𝑔 +Q )})
4 addclnq 9646 . . . . . 6 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
53, 4genpelv 9701 . . . . 5 ((𝐴P𝐶P) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
62, 5sylan2 490 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
71abeq2i 2722 . . . . . . . . . . . 12 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
8 elprnq 9692 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
9 addnqf 9649 . . . . . . . . . . . . . . . . . . . . . 22 +Q :(Q × Q)⟶Q
109fdmi 5965 . . . . . . . . . . . . . . . . . . . . 21 dom +Q = (Q × Q)
11 0nnq 9625 . . . . . . . . . . . . . . . . . . . . 21 ¬ ∅ ∈ Q
1210, 11ndmovrcl 6718 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
1312simpld 474 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
148, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑦Q)
15 prub 9695 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑤𝐴) ∧ 𝑦Q) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1614, 15sylan2 490 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1712simprd 478 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q𝑥Q)
18 vex 3176 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
19 vex 3176 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
20 ltanq 9672 . . . . . . . . . . . . . . . . . . . . 21 (𝑢Q → (𝑧 <Q 𝑣 ↔ (𝑢 +Q 𝑧) <Q (𝑢 +Q 𝑣)))
21 vex 3176 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
22 addcomnq 9652 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 +Q 𝑣) = (𝑣 +Q 𝑧)
2318, 19, 20, 21, 22caovord2 6744 . . . . . . . . . . . . . . . . . . . 20 (𝑥Q → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
248, 17, 233syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
25 prcdnq 9694 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥) → (𝑤 +Q 𝑥) ∈ 𝐵))
2624, 25sylbid 229 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2726adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2816, 27syld 46 . . . . . . . . . . . . . . . 16 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))
2928exp32 629 . . . . . . . . . . . . . . 15 ((𝐴P𝑤𝐴) → (𝐵P → ((𝑦 +Q 𝑥) ∈ 𝐵 → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3029com34 89 . . . . . . . . . . . . . 14 ((𝐴P𝑤𝐴) → (𝐵P → (¬ 𝑦𝐴 → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3130imp4b 611 . . . . . . . . . . . . 13 (((𝐴P𝑤𝐴) ∧ 𝐵P) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
3231exlimdv 1848 . . . . . . . . . . . 12 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
337, 32syl5bi 231 . . . . . . . . . . 11 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))
3433exp31 628 . . . . . . . . . 10 (𝐴P → (𝑤𝐴 → (𝐵P → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3534com23 84 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑤𝐴 → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3635imp43 619 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) → (𝑤 +Q 𝑥) ∈ 𝐵)
37 eleq1 2676 . . . . . . . . 9 (𝑧 = (𝑤 +Q 𝑥) → (𝑧𝐵 ↔ (𝑤 +Q 𝑥) ∈ 𝐵))
3837biimparc 503 . . . . . . . 8 (((𝑤 +Q 𝑥) ∈ 𝐵𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
3936, 38sylan 487 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
4039exp31 628 . . . . . 6 ((𝐴P𝐵P) → ((𝑤𝐴𝑥𝐶) → (𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵)))
4140rexlimdvv 3019 . . . . 5 ((𝐴P𝐵P) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
4241adantrr 749 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
436, 42sylbid 229 . . 3 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) → 𝑧𝐵))
4443ssrdv 3574 . 2 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝐴 +P 𝐶) ⊆ 𝐵)
4544anassrs 678 1 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wrex 2897  wss 3540  wpss 3541   class class class wbr 4583   × cxp 5036  (class class class)co 6549  Qcnq 9553   +Q cplq 9556   <Q cltq 9559  Pcnp 9560   +P cpp 9562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-plpq 9609  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-plq 9615  df-mq 9616  df-1nq 9617  df-ltnq 9619  df-np 9682  df-plp 9684
This theorem is referenced by:  ltexpri  9744
  Copyright terms: Public domain W3C validator