MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbtwnnq Structured version   Visualization version   GIF version

Theorem ltbtwnnq 9679
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltbtwnnq (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 9627 . . . . 5 <Q ⊆ (Q × Q)
21brel 5090 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simprd 478 . . 3 (𝐴 <Q 𝐵𝐵Q)
4 ltexnq 9676 . . . 4 (𝐵Q → (𝐴 <Q 𝐵 ↔ ∃𝑦(𝐴 +Q 𝑦) = 𝐵))
5 eleq1 2676 . . . . . . . . . 10 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑦) ∈ Q𝐵Q))
65biimparc 503 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑦) ∈ Q)
7 addnqf 9649 . . . . . . . . . . 11 +Q :(Q × Q)⟶Q
87fdmi 5965 . . . . . . . . . 10 dom +Q = (Q × Q)
9 0nnq 9625 . . . . . . . . . 10 ¬ ∅ ∈ Q
108, 9ndmovrcl 6718 . . . . . . . . 9 ((𝐴 +Q 𝑦) ∈ Q → (𝐴Q𝑦Q))
116, 10syl 17 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴Q𝑦Q))
1211simprd 478 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝑦Q)
13 nsmallnq 9678 . . . . . . . 8 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
1411simpld 474 . . . . . . . . . . . 12 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴Q)
151brel 5090 . . . . . . . . . . . . 13 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
1615simpld 474 . . . . . . . . . . . 12 (𝑧 <Q 𝑦𝑧Q)
17 ltaddnq 9675 . . . . . . . . . . . 12 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1814, 16, 17syl2an 493 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
19 ltanq 9672 . . . . . . . . . . . . . 14 (𝐴Q → (𝑧 <Q 𝑦 ↔ (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦)))
2019biimpa 500 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
2114, 20sylan 487 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
22 simplr 788 . . . . . . . . . . . 12 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑦) = 𝐵)
2321, 22breqtrd 4609 . . . . . . . . . . 11 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) <Q 𝐵)
24 ovex 6577 . . . . . . . . . . . 12 (𝐴 +Q 𝑧) ∈ V
25 breq2 4587 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
26 breq1 4586 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2725, 26anbi12d 743 . . . . . . . . . . . 12 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2824, 27spcev 3273 . . . . . . . . . . 11 ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
2918, 23, 28syl2anc 691 . . . . . . . . . 10 (((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑧 <Q 𝑦) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3029ex 449 . . . . . . . . 9 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3130exlimdv 1848 . . . . . . . 8 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3213, 31syl5 33 . . . . . . 7 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3312, 32mpd 15 . . . . . 6 ((𝐵Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
3433ex 449 . . . . 5 (𝐵Q → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3534exlimdv 1848 . . . 4 (𝐵Q → (∃𝑦(𝐴 +Q 𝑦) = 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
364, 35sylbid 229 . . 3 (𝐵Q → (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵)))
373, 36mpcom 37 . 2 (𝐴 <Q 𝐵 → ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
38 ltsonq 9670 . . . 4 <Q Or Q
3938, 1sotri 5442 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4039exlimiv 1845 . 2 (∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
4137, 40impbii 198 1 (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977   class class class wbr 4583   × cxp 5036  (class class class)co 6549  Qcnq 9553   +Q cplq 9556   <Q cltq 9559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-plpq 9609  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-plq 9615  df-mq 9616  df-1nq 9617  df-rq 9618  df-ltnq 9619
This theorem is referenced by:  nqpr  9715  reclem2pr  9749
  Copyright terms: Public domain W3C validator