MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmval Structured version   Visualization version   GIF version

Theorem lsmval 17886
Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmval.v 𝐵 = (Base‘𝐺)
lsmval.a + = (+g𝐺)
lsmval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmval ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lsmval
StepHypRef Expression
1 subgrcl 17422 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3 lsmval.v . . . 4 𝐵 = (Base‘𝐺)
43subgss 17418 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇𝐵)
54adantr 480 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇𝐵)
63subgss 17418 . . 3 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
76adantl 481 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈𝐵)
8 lsmval.a . . 3 + = (+g𝐺)
9 lsmval.p . . 3 = (LSSum‘𝐺)
103, 8, 9lsmvalx 17877 . 2 ((𝐺 ∈ Grp ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
112, 5, 7, 10syl3anc 1318 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wss 3540  ran crn 5039  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  SubGrpcsubg 17411  LSSumclsm 17872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-subg 17414  df-lsm 17874
This theorem is referenced by:  lsmidm  17900  lsmass  17906
  Copyright terms: Public domain W3C validator