Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0eq Structured version   Visualization version   GIF version

Theorem lsatcv0eq 33352
Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 28622 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0eq.o 0 = (0g𝑊)
lsatcv0eq.p = (LSSum‘𝑊)
lsatcv0eq.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0eq.c 𝐶 = ( ⋖L𝑊)
lsatcv0eq.w (𝜑𝑊 ∈ LVec)
lsatcv0eq.q (𝜑𝑄𝐴)
lsatcv0eq.r (𝜑𝑅𝐴)
Assertion
Ref Expression
lsatcv0eq (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))

Proof of Theorem lsatcv0eq
StepHypRef Expression
1 lsatcv0eq.o . . . . . 6 0 = (0g𝑊)
2 lsatcv0eq.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
3 lsatcv0eq.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lsatcv0eq.q . . . . . 6 (𝜑𝑄𝐴)
5 lsatcv0eq.r . . . . . 6 (𝜑𝑅𝐴)
61, 2, 3, 4, 5lsatnem0 33350 . . . . 5 (𝜑 → (𝑄𝑅 ↔ (𝑄𝑅) = { 0 }))
7 eqid 2610 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
8 lsatcv0eq.p . . . . . 6 = (LSSum‘𝑊)
9 lsatcv0eq.c . . . . . 6 𝐶 = ( ⋖L𝑊)
10 lveclmod 18927 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
113, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
127, 2, 11, 4lsatlssel 33302 . . . . . 6 (𝜑𝑄 ∈ (LSubSp‘𝑊))
137, 8, 1, 2, 9, 3, 12, 5lcvp 33345 . . . . 5 (𝜑 → ((𝑄𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 𝑅)))
141, 2, 9, 3, 4lsatcv0 33336 . . . . . 6 (𝜑 → { 0 }𝐶𝑄)
1514biantrurd 528 . . . . 5 (𝜑 → (𝑄𝐶(𝑄 𝑅) ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
166, 13, 153bitrd 293 . . . 4 (𝜑 → (𝑄𝑅 ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
173adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑊 ∈ LVec)
181, 7lsssn0 18769 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
1911, 18syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
2019adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 } ∈ (LSubSp‘𝑊))
2112adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊))
227, 2, 11, 5lsatlssel 33302 . . . . . . . 8 (𝜑𝑅 ∈ (LSubSp‘𝑊))
237, 8lsmcl 18904 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2411, 12, 22, 23syl3anc 1318 . . . . . . 7 (𝜑 → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2524adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
26 simprl 790 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 }𝐶𝑄)
27 simprr 792 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄𝐶(𝑄 𝑅))
287, 9, 17, 20, 21, 25, 26, 27lcvntr 33331 . . . . 5 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → ¬ { 0 }𝐶(𝑄 𝑅))
2928ex 449 . . . 4 (𝜑 → (({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅)) → ¬ { 0 }𝐶(𝑄 𝑅)))
3016, 29sylbid 229 . . 3 (𝜑 → (𝑄𝑅 → ¬ { 0 }𝐶(𝑄 𝑅)))
3130necon4ad 2801 . 2 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) → 𝑄 = 𝑅))
327lsssssubg 18779 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3311, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3433, 12sseldd 3569 . . . . 5 (𝜑𝑄 ∈ (SubGrp‘𝑊))
358lsmidm 17900 . . . . 5 (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 𝑄) = 𝑄)
3634, 35syl 17 . . . 4 (𝜑 → (𝑄 𝑄) = 𝑄)
3714, 36breqtrrd 4611 . . 3 (𝜑 → { 0 }𝐶(𝑄 𝑄))
38 oveq2 6557 . . . 4 (𝑄 = 𝑅 → (𝑄 𝑄) = (𝑄 𝑅))
3938breq2d 4595 . . 3 (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 𝑄) ↔ { 0 }𝐶(𝑄 𝑅)))
4037, 39syl5ibcom 234 . 2 (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 𝑅)))
4131, 40impbid 201 1 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  cin 3539  wss 3540  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  0gc0g 15923  SubGrpcsubg 17411  LSSumclsm 17872  LModclmod 18686  LSubSpclss 18753  LVecclvec 18923  LSAtomsclsa 33279  L clcv 33323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lcv 33324
This theorem is referenced by:  lsatcv1  33353
  Copyright terms: Public domain W3C validator