Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lneq2at Structured version   Visualization version   GIF version

Theorem lneq2at 34082
Description: A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.)
Hypotheses
Ref Expression
lneq2at.b 𝐵 = (Base‘𝐾)
lneq2at.l = (le‘𝐾)
lneq2at.j = (join‘𝐾)
lneq2at.a 𝐴 = (Atoms‘𝐾)
lneq2at.n 𝑁 = (Lines‘𝐾)
lneq2at.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lneq2at (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋 = (𝑃 𝑄))

Proof of Theorem lneq2at
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1084 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝐾 ∈ HL)
2 simp12 1085 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋𝐵)
31, 2jca 553 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑋𝐵))
4 simp13 1086 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑀𝑋) ∈ 𝑁)
5 lneq2at.b . . . . 5 𝐵 = (Base‘𝐾)
6 lneq2at.j . . . . 5 = (join‘𝐾)
7 lneq2at.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 lneq2at.n . . . . 5 𝑁 = (Lines‘𝐾)
9 lneq2at.m . . . . 5 𝑀 = (pmap‘𝐾)
105, 6, 7, 8, 9isline3 34080 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠))))
1110biimpd 218 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠))))
123, 4, 11sylc 63 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠)))
13 simp3r 1083 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑋 = (𝑟 𝑠))
14 simp111 1183 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝐾 ∈ HL)
15 simp121 1186 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑃𝐴)
16 simp122 1187 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑄𝐴)
1715, 16jca 553 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃𝐴𝑄𝐴))
18 simp2 1055 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑟𝐴𝑠𝐴))
1914, 17, 183jca 1235 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)))
20 simp123 1188 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑃𝑄)
2119, 20jca 553 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄))
22 hllat 33668 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
231, 22syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝐾 ∈ Lat)
24 simp21 1087 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑃𝐴)
255, 7atbase 33594 . . . . . . . . . . . 12 (𝑃𝐴𝑃𝐵)
2624, 25syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑃𝐵)
27 simp22 1088 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑄𝐴)
285, 7atbase 33594 . . . . . . . . . . . 12 (𝑄𝐴𝑄𝐵)
2927, 28syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑄𝐵)
3026, 29, 23jca 1235 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃𝐵𝑄𝐵𝑋𝐵))
3123, 30jca 553 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)))
32 simp3 1056 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃 𝑋𝑄 𝑋))
33 lneq2at.l . . . . . . . . . . 11 = (le‘𝐾)
345, 33, 6latjle12 16885 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃 𝑋𝑄 𝑋) ↔ (𝑃 𝑄) 𝑋))
3534biimpd 218 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃 𝑋𝑄 𝑋) → (𝑃 𝑄) 𝑋))
3631, 32, 35sylc 63 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃 𝑄) 𝑋)
37363ad2ant1 1075 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) 𝑋)
3837, 13breqtrd 4609 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) (𝑟 𝑠))
39 simpl1 1057 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
40 simpl2l 1107 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑃𝐴)
41 simpl2r 1108 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑄𝐴)
42 simpr 476 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑃𝑄)
43 simpl3 1059 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → (𝑟𝐴𝑠𝐴))
4433, 6, 7ps-1 33781 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑟𝐴𝑠𝐴)) → ((𝑃 𝑄) (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑟 𝑠)))
4539, 40, 41, 42, 43, 44syl131anc 1331 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → ((𝑃 𝑄) (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑟 𝑠)))
4645biimpd 218 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → ((𝑃 𝑄) (𝑟 𝑠) → (𝑃 𝑄) = (𝑟 𝑠)))
4721, 38, 46sylc 63 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) = (𝑟 𝑠))
4813, 47eqtr4d 2647 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑋 = (𝑃 𝑄))
49483exp 1256 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → ((𝑟𝐴𝑠𝐴) → ((𝑟𝑠𝑋 = (𝑟 𝑠)) → 𝑋 = (𝑃 𝑄))))
5049rexlimdvv 3019 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠)) → 𝑋 = (𝑃 𝑄)))
5112, 50mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋 = (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  Linesclines 33798  pmapcpmap 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lines 33805  df-pmap 33808
This theorem is referenced by:  lnjatN  34084  lncmp  34087  cdlema1N  34095
  Copyright terms: Public domain W3C validator