Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineelsb2 Structured version   Visualization version   GIF version

Theorem lineelsb2 31425
Description: If 𝑆 lies on 𝑃𝑄, then 𝑃𝑄 = 𝑃𝑆. Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineelsb2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))

Proof of Theorem lineelsb2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1057 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2 simpl3l 1109 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆 ∈ (𝔼‘𝑁))
3 simpl21 1132 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
4 simpl22 1133 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
5 brcolinear 31336 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
61, 2, 3, 4, 5syl13anc 1320 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
76biimpa 500 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩))
8 simpr 476 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
9 brcolinear 31336 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
101, 8, 3, 4, 9syl13anc 1320 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
1110adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
12 btwnconn3 31380 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
131, 3, 2, 8, 4, 12syl122anc 1327 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1413imp 444 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
15 btwncolinear3 31348 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
161, 3, 8, 2, 15syl13anc 1320 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17 btwncolinear5 31350 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
181, 3, 2, 8, 17syl13anc 1320 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
1916, 18jaod 394 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2019adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2114, 20mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
2221expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
23 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
241, 2, 3, 4, 23btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
25 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
261, 4, 2, 3, 8, 24, 25btwnexch3and 31298 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
27 btwncolinear4 31349 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
281, 2, 8, 3, 27syl13anc 1320 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2928adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3026, 29mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3130expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
32 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
33 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
341, 4, 8, 3, 33btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
351, 3, 2, 4, 8, 32, 34btwnexchand 31303 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
3616adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3735, 36mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3837expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3922, 31, 383jaod 1384 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
4011, 39sylbid 229 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
41 brcolinear 31336 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
421, 8, 3, 2, 41syl13anc 1320 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
4342adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
44 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
45 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
461, 3, 8, 2, 4, 44, 45btwnexchand 31303 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
47 btwncolinear5 31350 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
481, 3, 4, 8, 47syl13anc 1320 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4948adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5046, 49mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
5150expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
52 simpl3r 1110 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑆)
5352necomd 2837 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆𝑃)
5453adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
55 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
561, 2, 3, 4, 55btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
57 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
58 btwnouttr2 31299 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
591, 4, 2, 3, 8, 58syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6059adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6154, 56, 57, 60mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
62 btwncolinear4 31349 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
631, 4, 8, 3, 62syl13anc 1320 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6561, 64mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
6665expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6752adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
68 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
69 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
701, 2, 8, 3, 69btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
71 btwnconn1 31378 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
721, 3, 2, 4, 8, 71syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7372adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7467, 68, 70, 73mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
75 btwncolinear3 31348 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
761, 3, 8, 4, 75syl13anc 1320 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7776, 48jaod 394 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7877adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7974, 78mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
8079expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8151, 66, 803jaod 1384 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8243, 81sylbid 229 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8340, 82impbid 201 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
8410adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
85 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
861, 8, 3, 4, 85btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑄, 𝑃⟩)
87 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
881, 4, 8, 3, 2, 86, 87btwnexch3and 31298 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑥, 𝑆⟩)
89 btwncolinear2 31347 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
901, 8, 2, 3, 89syl13anc 1320 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9190adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9288, 91mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
9392expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
94 simpl23 1134 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑄)
9594necomd 2837 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄𝑃)
9695adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
97 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
98 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
99 btwnconn2 31379 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1001, 4, 3, 2, 8, 99syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
101100adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
10296, 97, 98, 101mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
10319adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
104102, 103mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
105104expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
10694adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
107 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1081, 3, 4, 2, 107btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
109 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1101, 4, 8, 3, 109btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
111 btwnouttr 31301 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1121, 2, 3, 4, 8, 111syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
113112adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
114106, 108, 110, 113mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
11528adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
116114, 115mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
117116expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11893, 105, 1173jaod 1384 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11984, 118sylbid 229 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
12042adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
121 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
1221, 8, 3, 2, 121btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑆, 𝑃⟩)
123 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1241, 3, 4, 2, 123btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
1251, 2, 8, 3, 4, 122, 124btwnexch3and 31298 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑥, 𝑄⟩)
126 btwncolinear2 31347 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
1271, 8, 4, 3, 126syl13anc 1320 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
128127adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
130129expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
13153adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
132 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1331, 3, 4, 2, 132btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
134 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
135 btwnconn2 31379 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1361, 2, 3, 4, 8, 135syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
137136adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
138131, 133, 134, 137mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
13977adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
140138, 139mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
141140expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
14252adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
143 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
144 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
1451, 2, 8, 3, 144btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
146 btwnouttr 31301 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
1471, 4, 3, 2, 8, 146syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
148147adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
149142, 143, 145, 148mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
15063adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
151149, 150mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
152151expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
153130, 141, 1523jaod 1384 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
154120, 153sylbid 229 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
155119, 154impbid 201 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
15610adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
157 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
158 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1591, 4, 2, 3, 158btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
1601, 3, 8, 4, 2, 157, 159btwnexchand 31303 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
16118adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
162160, 161mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
163162expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
16495adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
165 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
166 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
167 btwnouttr2 31299 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1681, 2, 4, 3, 8, 167syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
169168adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
170164, 165, 166, 169mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
17128adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
172170, 171mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
173172expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17494adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
175 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1761, 4, 2, 3, 175btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
177 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1781, 4, 8, 3, 177btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
179 btwnconn1 31378 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1801, 3, 4, 2, 8, 179syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
181180adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
182174, 176, 178, 181mp3and 1419 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
18319adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
184182, 183mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
185184expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
186163, 173, 1853jaod 1384 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
187156, 186sylbid 229 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
18842adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
189 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1901, 4, 2, 3, 189btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
191 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
192 btwnconn3 31380 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1931, 3, 4, 8, 2, 192syl122anc 1327 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
194193adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
195190, 191, 194mp2and 711 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
19677adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
197195, 196mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
198197expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
199 simprl 790 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
200 simprr 792 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
2011, 2, 4, 3, 8, 199, 200btwnexch3and 31298 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
20263adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
203201, 202mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
204203expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
205 simprl 790 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
2061, 4, 2, 3, 205btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
207 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
2081, 2, 8, 3, 207btwncomand 31292 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
2091, 3, 4, 2, 8, 206, 208btwnexchand 31303 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
21076adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
211209, 210mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
212211expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
213198, 204, 2123jaod 1384 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
214188, 213sylbid 229 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
215187, 214impbid 201 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
21683, 155, 2153jaodan 1386 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2177, 216syldan 486 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
218217adantrl 748 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
219218an32s 842 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
220219rabbidva 3163 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
221220ex 449 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
222 fvline2 31423 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
2232223adant3 1074 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
224223eleq2d 2673 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ 𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩}))
225 breq1 4586 . . . 4 (𝑥 = 𝑆 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
226225elrab 3331 . . 3 (𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
227224, 226syl6bb 275 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)))
228 simp1 1054 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑁 ∈ ℕ)
229 simp21 1087 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃 ∈ (𝔼‘𝑁))
230 simp3l 1082 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑆 ∈ (𝔼‘𝑁))
231 simp3r 1083 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃𝑆)
232 fvline2 31423 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
233228, 229, 230, 231, 232syl13anc 1320 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
234223, 233eqeq12d 2625 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑃Line𝑄) = (𝑃Line𝑆) ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
235221, 227, 2343imtr4d 282 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  cn 10897  𝔼cee 25568   Btwn cbtwn 25569   Colinear ccolin 31314  Linecline2 31411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-ee 25571  df-btwn 25572  df-cgr 25573  df-ofs 31260  df-colinear 31316  df-ifs 31317  df-cgr3 31318  df-fs 31319  df-line2 31414
This theorem is referenced by:  linethru  31430
  Copyright terms: Public domain W3C validator