Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limclner Structured version   Visualization version   GIF version

Theorem limclner 38718
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limclner.k 𝐾 = (TopOpen‘ℂfld)
limclner.a (𝜑𝐴 ⊆ ℝ)
limclner.j 𝐽 = (topGen‘ran (,))
limclner.f (𝜑𝐹:𝐴⟶ℂ)
limclner.blp1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
limclner.blp2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
limclner.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limclner.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limclner.lner (𝜑𝐿𝑅)
Assertion
Ref Expression
limclner (𝜑 → (𝐹 lim 𝐵) = ∅)

Proof of Theorem limclner
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑧 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23445 . . . . . . . . . . . . 13 ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ⊆ ℂ
2 limclner.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
31, 2sseldi 3566 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℂ)
43ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅 ∈ ℂ)
5 limccl 23445 . . . . . . . . . . . . 13 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
6 limclner.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
75, 6sseldi 3566 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℂ)
87ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝐿 ∈ ℂ)
94, 8subcld 10271 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
10 limclner.lner . . . . . . . . . . . . 13 (𝜑𝐿𝑅)
1110necomd 2837 . . . . . . . . . . . 12 (𝜑𝑅𝐿)
1211ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 𝑅𝐿)
134, 8, 12subne0d 10280 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑅𝐿) ≠ 0)
149, 13absrpcld 14035 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ+)
15 4re 10974 . . . . . . . . . . 11 4 ∈ ℝ
16 4pos 10993 . . . . . . . . . . 11 0 < 4
1715, 16elrpii 11711 . . . . . . . . . 10 4 ∈ ℝ+
1817a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → 4 ∈ ℝ+)
1914, 18rpdivcld 11765 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+)
20 nfv 1830 . . . . . . . . . . 11 𝑦(𝜑𝑥 ∈ ℂ)
21 nfra1 2925 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)
2220, 21nfan 1816 . . . . . . . . . 10 𝑦((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
23 nfv 1830 . . . . . . . . . 10 𝑦(((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
2422, 23nfim 1813 . . . . . . . . 9 𝑦(((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
25 ovex 6577 . . . . . . . . 9 ((abs‘(𝑅𝐿)) / 4) ∈ V
26 eleq1 2676 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (𝑦 ∈ ℝ+ ↔ ((abs‘(𝑅𝐿)) / 4) ∈ ℝ+))
27 oveq2 6557 . . . . . . . . . . . . 13 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (4 · 𝑦) = (4 · ((abs‘(𝑅𝐿)) / 4)))
2827breq2d 4595 . . . . . . . . . . . 12 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
29282rexbidv 3039 . . . . . . . . . . 11 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦) ↔ ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
3026, 29imbi12d 333 . . . . . . . . . 10 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)) ↔ (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))))
3130imbi2d 329 . . . . . . . . 9 (𝑦 = ((abs‘(𝑅𝐿)) / 4) → ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))) ↔ (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))))
32 simpll 786 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → (𝜑𝑥 ∈ ℂ))
33 simpr 476 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
34 rspa 2914 . . . . . . . . . . . 12 ((∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
3534adantll 746 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
36 limclner.f . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝐴⟶ℂ)
37 fresin 5986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
39 inss2 3796 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
40 ioosscn 38563 . . . . . . . . . . . . . . . . . . . . . . . 24 (-∞(,)𝐵) ⊆ ℂ
4139, 40sstri 3577 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ
4241a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
43 limclner.j . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐽 = (topGen‘ran (,))
44 retop 22375 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (topGen‘ran (,)) ∈ Top
4543, 44eqeltri 2684 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐽 ∈ Top
46 ioossre 12106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-∞(,)𝐵) ⊆ ℝ
4739, 46sstri 3577 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
48 uniretop 22376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ = (topGen‘ran (,))
4943unieqi 4381 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐽 = (topGen‘ran (,))
5048, 49eqtr4i 2635 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ = 𝐽
5150lpss 20756 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ)
5245, 47, 51mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . 24 ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ
53 limclner.blp1 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
5452, 53sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ ℝ)
5554recnd 9947 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ ℂ)
5638, 42, 55ellimc3 23449 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))))
576, 56mpbid 221 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)))
5857simprd 478 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
5958r19.21bi 2916 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
60593ad2ant1 1075 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
61 simp11l 1165 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝜑)
62 simp12 1085 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑧 ∈ ℝ+)
63 simp2 1055 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → 𝑣 ∈ ℝ+)
64 ifcl 4080 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
65643adant1 1072 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+)
66 inss1 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
6766a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
68 limclner.k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝐾 = (TopOpen‘ℂfld)
6968cnfldtop 22397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐾 ∈ Top
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐾 ∈ Top)
71 ax-resscn 9872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℂ
7271a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ℝ ⊆ ℂ)
7347a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ)
74 unicntop 38230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ℂ = (TopOpen‘ℂfld)
7568unieqi 4381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝐾 = (TopOpen‘ℂfld)
7674, 75eqtr4i 2635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℂ = 𝐾
7768tgioo2 22414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (topGen‘ran (,)) = (𝐾t ℝ)
7843, 77eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐽 = (𝐾t ℝ)
7976, 78restlp 20797 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
8070, 72, 73, 79syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) = (((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))) ∩ ℝ))
8168eqcomi 2619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (TopOpen‘ℂfld) = 𝐾
8281fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐾)
8382fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵)))
8483a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) = ((limPt‘𝐾)‘(𝐴 ∩ (-∞(,)𝐵))))
8567, 80, 843sstr4d 3611 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
8685, 53sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))))
8742, 55islpcn 38706 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (-∞(,)𝐵))) ↔ ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢))
8886, 87mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
89883ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢)
90 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑢 ↔ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
9190rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢 ↔ ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
9291rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . 23 ((if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+ ∧ ∀𝑢 ∈ ℝ+𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < 𝑢) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
9365, 89, 92syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
94 eldifi 3694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
9547, 94sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎 ∈ ℝ)
9672sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
9755adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ ℂ)
9896, 97subcld 10271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑎 ∈ ℝ) → (𝑎𝐵) ∈ ℂ)
9998abscld 14023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
100993ad2antl1 1216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (abs‘(𝑎𝐵)) ∈ ℝ)
101100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) ∈ ℝ)
10265rpred 11748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
103102ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
104 rpre 11715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
1051043ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑧 ∈ ℝ)
106105ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
107 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
108 rpre 11715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
109 min1 11894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
110104, 108, 109syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
1111103adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
112111ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
113101, 103, 106, 107, 112ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
114108adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑣 ∈ ℝ)
1151143adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → 𝑣 ∈ ℝ)
116115ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
117 min2 11895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ ℝ ∧ 𝑣 ∈ ℝ) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
118104, 108, 117syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
1191183adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
120119ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
121101, 103, 116, 107, 120ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑎𝐵)) < 𝑣)
122113, 121jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
123122ex 449 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
12495, 123sylan2 490 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})) → ((abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
125124reximdva 3000 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})(abs‘(𝑎𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
12693, 125mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
12761, 62, 63, 126syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣))
128 nfv 1830 . . . . . . . . . . . . . . . . . . . . 21 𝑎(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
129 nfre1 2988 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
130 inss1 3795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∩ (-∞(,)𝐵)) ⊆ 𝐴
131130, 94sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐴)
1321313ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐴)
133 simp113 1185 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
134 eldifsni 4261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → 𝑎𝐵)
135134adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎𝐵)
136 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘(𝑎𝐵)) < 𝑧)
137135, 136jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
1381373adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧))
139 neeq1 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → (𝑤𝐵𝑎𝐵))
140 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑎 → (𝑤𝐵) = (𝑎𝐵))
141140fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑎 → (abs‘(𝑤𝐵)) = (abs‘(𝑎𝐵)))
142141breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑎𝐵)) < 𝑧))
143139, 142anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)))
144 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑎 → (𝐹𝑤) = (𝐹𝑎))
145144oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑎 → ((𝐹𝑤) − 𝑥) = ((𝐹𝑎) − 𝑥))
146145fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → (abs‘((𝐹𝑤) − 𝑥)) = (abs‘((𝐹𝑎) − 𝑥)))
147146breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((abs‘((𝐹𝑤) − 𝑥)) < 𝑦 ↔ (abs‘((𝐹𝑎) − 𝑥)) < 𝑦))
148143, 147imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)))
149148rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦))
150149imp 444 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑧)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
151132, 133, 138, 150syl21anc 1317 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
152943ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)))
153613ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → 𝜑)
154 simp13 1086 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
155 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑤𝜑
156 nfra1 2925 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑤𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
157155, 156nfan 1816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
158 elinel2 3762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → 𝑤 ∈ (-∞(,)𝐵))
159 fvres 6117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (-∞(,)𝐵) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑤) = (𝐹𝑤))
160158, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑤) = (𝐹𝑤))
161160eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (𝐹𝑤) = ((𝐹 ↾ (-∞(,)𝐵))‘𝑤))
162161oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝐹𝑤) − 𝐿) = (((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿))
163162fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
1641633ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)))
165 rspa 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦))
1661653impia 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
1671663adant1l 1310 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)
168164, 167eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)
1691683exp 1256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)))
170157, 169ralrimi 2940 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
171153, 154, 170syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦))
172134anim1i 590 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ (abs‘(𝑎𝐵)) < 𝑣) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
173172adantrl 748 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
1741733adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣))
175141breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑎𝐵)) < 𝑣))
176139, 175anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)))
177144oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑎 → ((𝐹𝑤) − 𝐿) = ((𝐹𝑎) − 𝐿))
178177fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑎 → (abs‘((𝐹𝑤) − 𝐿)) = (abs‘((𝐹𝑎) − 𝐿)))
179178breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑎 → ((abs‘((𝐹𝑤) − 𝐿)) < 𝑦 ↔ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
180176, 179imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑎 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦) ↔ ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
181180rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) → ((𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
182181imp 444 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝐴 ∩ (-∞(,)𝐵)) ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝐿)) < 𝑦)) ∧ (𝑎𝐵 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
183152, 171, 174, 182syl21anc 1317 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
184 rspe 2986 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐴 ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
185132, 151, 183, 184syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) ∧ 𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) ∧ ((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
1861853exp 1256 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵}) → (((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
187128, 129, 186rexlimd 3008 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → (∃𝑎 ∈ ((𝐴 ∩ (-∞(,)𝐵)) ∖ {𝐵})((abs‘(𝑎𝐵)) < 𝑧 ∧ (abs‘(𝑎𝐵)) < 𝑣) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
188127, 187mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
1891883exp 1256 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
190189rexlimdv 3012 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑤) − 𝐿)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
19160, 190mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
1921913exp 1256 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))))
193192rexlimdv 3012 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)))
194193imp 444 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
195194adantllr 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦))
196 fresin 5986 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
19736, 196syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
198 inss2 3796 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
199 ioosscn 38563 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵(,)+∞) ⊆ ℂ
200198, 199sstri 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
201200a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
202197, 201, 55ellimc3 23449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))))
2032, 202mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)))
204203simprd 478 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑦 ∈ ℝ+𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
205204r19.21bi 2916 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
2062053ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
207 simp11l 1165 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝜑)
208 simp12 1085 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑧 ∈ ℝ+)
209 simp2 1055 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → 𝑣 ∈ ℝ+)
210 inss1 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
211210a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ) ⊆ ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
212 ioossre 12106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐵(,)+∞) ⊆ ℝ
213198, 212sstri 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ
214213a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ)
21576, 78restlp 20797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ Top ∧ ℝ ⊆ ℂ ∧ (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
21670, 72, 214, 215syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) = (((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))) ∩ ℝ))
21782fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞)))
218217a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) = ((limPt‘𝐾)‘(𝐴 ∩ (𝐵(,)+∞))))
219211, 216, 2183sstr4d 3611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))) ⊆ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
220 limclner.blp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
221219, 220sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))))
222201, 55islpcn 38706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∩ (𝐵(,)+∞))) ↔ ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢))
223221, 222mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
2242233ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢)
225 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑢 ↔ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
226225rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = if(𝑧𝑣, 𝑧, 𝑣) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢 ↔ ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)))
227226rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ+ ∧ ∀𝑢 ∈ ℝ+𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < 𝑢) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
22865, 224, 227syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
229 eldifi 3694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
230213, 229sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏 ∈ ℝ)
23172sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℂ)
23255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑏 ∈ ℝ) → 𝐵 ∈ ℂ)
233231, 232subcld 10271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑏 ∈ ℝ) → (𝑏𝐵) ∈ ℂ)
234233abscld 14023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
2352343ad2antl1 1216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → (abs‘(𝑏𝐵)) ∈ ℝ)
236235adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) ∈ ℝ)
237102ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ∈ ℝ)
238105ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑧 ∈ ℝ)
239 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣))
240111ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑧)
241236, 237, 238, 239, 240ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
242115ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → 𝑣 ∈ ℝ)
243238, 242, 117syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → if(𝑧𝑣, 𝑧, 𝑣) ≤ 𝑣)
244236, 237, 242, 239, 243ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → (abs‘(𝑏𝐵)) < 𝑣)
245241, 244jca 553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) ∧ (abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣)) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
246245ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ℝ) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
247230, 246sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})) → ((abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
248247reximdva 3000 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})(abs‘(𝑏𝐵)) < if(𝑧𝑣, 𝑧, 𝑣) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
249228, 248mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ ℝ+𝑣 ∈ ℝ+) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
250207, 208, 209, 249syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣))
251 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑏(((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
252 nfre1 2988 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑏𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
253 inss1 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴 ∩ (𝐵(,)+∞)) ⊆ 𝐴
254253, 229sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐴)
2552543ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐴)
256 simp113 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
257 eldifsni 4261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → 𝑏𝐵)
258257adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏𝐵)
259 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘(𝑏𝐵)) < 𝑧)
260258, 259jca 553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
2612603adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧))
262 neeq1 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = 𝑏 → (𝑤𝐵𝑏𝐵))
263 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 = 𝑏 → (𝑤𝐵) = (𝑏𝐵))
264263fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 = 𝑏 → (abs‘(𝑤𝐵)) = (abs‘(𝑏𝐵)))
265264breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑧 ↔ (abs‘(𝑏𝐵)) < 𝑧))
266262, 265anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)))
267 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 = 𝑏 → (𝐹𝑤) = (𝐹𝑏))
268267oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 = 𝑏 → ((𝐹𝑤) − 𝑥) = ((𝐹𝑏) − 𝑥))
269268fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = 𝑏 → (abs‘((𝐹𝑤) − 𝑥)) = (abs‘((𝐹𝑏) − 𝑥)))
270269breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑏 → ((abs‘((𝐹𝑤) − 𝑥)) < 𝑦 ↔ (abs‘((𝐹𝑏) − 𝑥)) < 𝑦))
271266, 270imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)))
272271rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦))
273272imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑏𝐴 ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑧)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
274255, 256, 261, 273syl21anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
2752293ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)))
2762073ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → 𝜑)
277 simp13 1086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
278 nfra1 2925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑤𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
279155, 278nfan 1816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑤(𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
280 elinel2 3762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → 𝑤 ∈ (𝐵(,)+∞))
281 fvres 6117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑤 ∈ (𝐵(,)+∞) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑤) = (𝐹𝑤))
282280, 281syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑤) = (𝐹𝑤))
283282eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (𝐹𝑤) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑤))
284283oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝐹𝑤) − 𝑅) = (((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅))
285284fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
2862853ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)))
287 rspa 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦))
2882873impia 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
2892883adant1l 1310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)
290286, 289eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ (𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣)) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)
2912903exp 1256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞)) → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)))
292279, 291ralrimi 2940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
293276, 277, 292syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦))
294257anim1i 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ (abs‘(𝑏𝐵)) < 𝑣) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
295294adantrl 748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
2962953adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣))
297264breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = 𝑏 → ((abs‘(𝑤𝐵)) < 𝑣 ↔ (abs‘(𝑏𝐵)) < 𝑣))
298262, 297anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) ↔ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)))
299267oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 = 𝑏 → ((𝐹𝑤) − 𝑅) = ((𝐹𝑏) − 𝑅))
300299fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = 𝑏 → (abs‘((𝐹𝑤) − 𝑅)) = (abs‘((𝐹𝑏) − 𝑅)))
301300breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑏 → ((abs‘((𝐹𝑤) − 𝑅)) < 𝑦 ↔ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
302298, 301imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑏 → (((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦) ↔ ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
303302rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) → ((𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
304303imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑏 ∈ (𝐴 ∩ (𝐵(,)+∞)) ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘((𝐹𝑤) − 𝑅)) < 𝑦)) ∧ (𝑏𝐵 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
305275, 293, 296, 304syl21anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
306 rspe 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝐴 ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
307255, 274, 305, 306syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) ∧ 𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) ∧ ((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
3083073exp 1256 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵}) → (((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
309251, 252, 308rexlimd 3008 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → (∃𝑏 ∈ ((𝐴 ∩ (𝐵(,)+∞)) ∖ {𝐵})((abs‘(𝑏𝐵)) < 𝑧 ∧ (abs‘(𝑏𝐵)) < 𝑣) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
310250, 309mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑣 ∈ ℝ+ ∧ ∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
3113103exp 1256 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑣 ∈ ℝ+ → (∀𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
312311rexlimdv 3012 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑣 ∈ ℝ+𝑤 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑣) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑤) − 𝑅)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
313206, 312mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
3143133exp 1256 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))))
315314rexlimdv 3012 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)))
316315imp 444 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
317316adantllr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
318317ad2antrr 758 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦))
3193ad6antr 768 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑅 ∈ ℂ)
3207ad6antr 768 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝐿 ∈ ℂ)
321319, 320subcld 10271 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅𝐿) ∈ ℂ)
322321abscld 14023 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
323 simp-6l 806 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝜑)
324 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑏𝐴)
32536ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑏𝐴) → (𝐹𝑏) ∈ ℂ)
326323, 324, 325syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑏) ∈ ℂ)
327319, 326subcld 10271 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑅 − (𝐹𝑏)) ∈ ℂ)
328327abscld 14023 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) ∈ ℝ)
329 simp-6r 807 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑥 ∈ ℂ)
330326, 329subcld 10271 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑏) − 𝑥) ∈ ℂ)
331330abscld 14023 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) ∈ ℝ)
332328, 331readdcld 9948 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) ∈ ℝ)
333 simp-4r 803 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑎𝐴)
33436ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ℂ)
335323, 333, 334syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
336329, 335subcld 10271 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (𝑥 − (𝐹𝑎)) ∈ ℂ)
337336abscld 14023 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) ∈ ℝ)
338332, 337readdcld 9948 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) ∈ ℝ)
339335, 320subcld 10271 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((𝐹𝑎) − 𝐿) ∈ ℂ)
340339abscld 14023 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) ∈ ℝ)
341338, 340readdcld 9948 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) ∈ ℝ)
34215a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 4 ∈ ℝ)
343 rpre 11715 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
344343ad5antlr 767 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → 𝑦 ∈ ℝ)
345342, 344remulcld 9949 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (4 · 𝑦) ∈ ℝ)
346319, 326, 329, 335, 320absnpncan3d 38462 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) ≤ ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))))
347319, 326abssubd 14040 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) = (abs‘((𝐹𝑏) − 𝑅)))
348 simprr 792 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)
349347, 348eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅 − (𝐹𝑏))) < 𝑦)
350 simprl 790 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑏) − 𝑥)) < 𝑦)
351 simp-5r 805 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → 𝑥 ∈ ℂ)
352 simp-4l 802 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → 𝜑)
353 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → 𝑎𝐴)
354352, 353, 334syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (𝐹𝑎) ∈ ℂ)
355354adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (𝐹𝑎) ∈ ℂ)
356351, 355abssubd 14040 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) = (abs‘((𝐹𝑎) − 𝑥)))
357 simplrl 796 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝑥)) < 𝑦)
358356, 357eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
359358adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑥 − (𝐹𝑎))) < 𝑦)
360 simplrr 797 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
361360adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)
362328, 331, 337, 340, 344, 349, 350, 359, 361lt4addmuld 38461 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → ((((abs‘(𝑅 − (𝐹𝑏))) + (abs‘((𝐹𝑏) − 𝑥))) + (abs‘(𝑥 − (𝐹𝑎)))) + (abs‘((𝐹𝑎) − 𝐿))) < (4 · 𝑦))
363322, 341, 345, 346, 362lelttrd 10074 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) ∧ ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦)) → (abs‘(𝑅𝐿)) < (4 · 𝑦))
364363ex 449 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
365364adantlllr 38222 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) ∧ 𝑏𝐴) → (((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → (abs‘(𝑅𝐿)) < (4 · 𝑦)))
366365reximdva 3000 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → (∃𝑏𝐴 ((abs‘((𝐹𝑏) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑏) − 𝑅)) < 𝑦) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
367318, 366mpd 15 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) ∧ ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦)) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
368367ex 449 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑎𝐴) → (((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦) → ∃𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
369368reximdva 3000 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑎𝐴 ((abs‘((𝐹𝑎) − 𝑥)) < 𝑦 ∧ (abs‘((𝐹𝑎) − 𝐿)) < 𝑦) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
370195, 369mpd 15 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ ∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
37132, 33, 35, 370syl21anc 1317 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ∧ 𝑦 ∈ ℝ+) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦))
372371ex 449 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (𝑦 ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · 𝑦)))
37324, 25, 31, 372vtoclf 3231 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (((abs‘(𝑅𝐿)) / 4) ∈ ℝ+ → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))))
37419, 373mpd 15 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
375 simpr 476 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)))
376 abssubrp 38428 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝑅𝐿) → (abs‘(𝑅𝐿)) ∈ ℝ+)
3773, 7, 11, 376syl3anc 1318 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℝ+)
378377rpcnd 11750 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝑅𝐿)) ∈ ℂ)
379378adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) ∈ ℂ)
380 4cn 10975 . . . . . . . . . . . . . 14 4 ∈ ℂ
381380a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ∈ ℂ)
382 4ne0 10994 . . . . . . . . . . . . . 14 4 ≠ 0
383382a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → 4 ≠ 0)
384379, 381, 383divcan2d 10682 . . . . . . . . . . . 12 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (4 · ((abs‘(𝑅𝐿)) / 4)) = (abs‘(𝑅𝐿)))
385375, 384breqtrd 4609 . . . . . . . . . . 11 ((𝜑 ∧ (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4))) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
386385ex 449 . . . . . . . . . 10 (𝜑 → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
387386a1d 25 . . . . . . . . 9 (𝜑 → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
388387ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ((𝑎𝐴𝑏𝐴) → ((abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))))
389388rexlimdvv 3019 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (∃𝑎𝐴𝑏𝐴 (abs‘(𝑅𝐿)) < (4 · ((abs‘(𝑅𝐿)) / 4)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿))))
390374, 389mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
3919abscld 14023 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → (abs‘(𝑅𝐿)) ∈ ℝ)
392391ltnrd 10050 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) → ¬ (abs‘(𝑅𝐿)) < (abs‘(𝑅𝐿)))
393390, 392pm2.65da 598 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))
394393ex 449 . . . 4 (𝜑 → (𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
395 imnan 437 . . . 4 ((𝑥 ∈ ℂ → ¬ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)) ↔ ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
396394, 395sylib 207 . . 3 (𝜑 → ¬ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦)))
397 limclner.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
398397, 72sstrd 3578 . . . 4 (𝜑𝐴 ⊆ ℂ)
39936, 398, 55ellimc3 23449 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑤𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑧) → (abs‘((𝐹𝑤) − 𝑥)) < 𝑦))))
400396, 399mtbird 314 . 2 (𝜑 → ¬ 𝑥 ∈ (𝐹 lim 𝐵))
401400eq0rdv 3931 1 (𝜑 → (𝐹 lim 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  cin 3539  wss 3540  c0 3874  ifcif 4036  {csn 4125   cuni 4372   class class class wbr 4583  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  4c4 10949  +crp 11708  (,)cioo 12046  abscabs 13822  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  Topctop 20517  limPtclp 20748   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436
This theorem is referenced by:  limclr  38722  jumpncnp  38784
  Copyright terms: Public domain W3C validator