Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinc Structured version   Visualization version   GIF version

Theorem ldepsnlinc 42091
Description: The reverse implication of islindeps2 42066 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combinantion of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 42079 and zlmodzxznm 42080. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepsnlinc 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Distinct variable group:   𝑓,𝑚,𝑠,𝑣

Proof of Theorem ldepsnlinc
StepHypRef Expression
1 eqid 2610 . . . 4 (ℤring freeLMod {0, 1}) = (ℤring freeLMod {0, 1})
21zlmodzxzlmod 41925 . . 3 ((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
32simpli 473 . 2 (ℤring freeLMod {0, 1}) ∈ LMod
4 3z 11287 . . . . 5 3 ∈ ℤ
5 6nn 11066 . . . . . 6 6 ∈ ℕ
65nnzi 11278 . . . . 5 6 ∈ ℤ
71zlmodzxzel 41926 . . . . 5 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
84, 6, 7mp2an 704 . . . 4 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
9 2z 11286 . . . . 5 2 ∈ ℤ
10 4z 11288 . . . . 5 4 ∈ ℤ
111zlmodzxzel 41926 . . . . 5 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
129, 10, 11mp2an 704 . . . 4 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
13 prelpwi 4842 . . . 4 (({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))) → {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})))
148, 12, 13mp2an 704 . . 3 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))
15 eqid 2610 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} = {⟨0, 3⟩, ⟨1, 6⟩}
16 eqid 2610 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} = {⟨0, 2⟩, ⟨1, 4⟩}
171, 15, 16zlmodzxzldep 42087 . . . 4 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})
181, 15, 16ldepsnlinclem1 42088 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
19 simpr 476 . . . . . . . . . . . 12 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
2019eqcomd 2616 . . . . . . . . . . 11 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → (Scalar‘(ℤring freeLMod {0, 1})) = ℤring)
212, 20ax-mp 5 . . . . . . . . . 10 (Scalar‘(ℤring freeLMod {0, 1})) = ℤring
2221fveq2i 6106 . . . . . . . . 9 (Base‘(Scalar‘(ℤring freeLMod {0, 1}))) = (Base‘ℤring)
2322oveq1i 6559 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) = ((Base‘ℤring) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})
2418, 23eleq2s 2706 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
2524a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
2625rgen 2906 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
271, 15, 16ldepsnlinclem2 42089 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
2822oveq1i 6559 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) = ((Base‘ℤring) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})
2927, 28eleq2s 2706 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
3029a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
3130rgen 2906 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
32 prex 4836 . . . . . 6 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
33 prex 4836 . . . . . 6 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
34 sneq 4135 . . . . . . . . . 10 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → {𝑣} = {{⟨0, 3⟩, ⟨1, 6⟩}})
3534difeq2d 3690 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}))
361, 15, 16zlmodzxzldeplem 42081 . . . . . . . . . 10 {⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩}
37 difprsn1 4271 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
3836, 37ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}}
3935, 38syl6eq 2660 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
4039oveq2d 6565 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}))
4139oveq2d 6565 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}))
42 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → 𝑣 = {⟨0, 3⟩, ⟨1, 6⟩})
4341, 42neeq12d 2843 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
4443imbi2d 329 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
4540, 44raleqbidv 3129 . . . . . 6 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
46 sneq 4135 . . . . . . . . . 10 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → {𝑣} = {{⟨0, 2⟩, ⟨1, 4⟩}})
4746difeq2d 3690 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}))
48 difprsn2 4272 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
4936, 48ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}}
5047, 49syl6eq 2660 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
5150oveq2d 6565 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}))
5250oveq2d 6565 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}))
53 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → 𝑣 = {⟨0, 2⟩, ⟨1, 4⟩})
5452, 53neeq12d 2843 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
5554imbi2d 329 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5651, 55raleqbidv 3129 . . . . . 6 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5732, 33, 45, 56ralpr 4185 . . . . 5 (∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5826, 31, 57mpbir2an 957 . . . 4 𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)
5917, 58pm3.2i 470 . . 3 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
60 breq1 4586 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 linDepS (ℤring freeLMod {0, 1}) ↔ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})))
61 id 22 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → 𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}})
62 difeq1 3683 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))
6362oveq2d 6565 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6462oveq2d 6565 . . . . . . . . 9 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6564neeq1d 2841 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
6665imbi2d 329 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6763, 66raleqbidv 3129 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6861, 67raleqbidv 3129 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6960, 68anbi12d 743 . . . 4 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))))
7069rspcev 3282 . . 3 (({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})) ∧ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))) → ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
7114, 59, 70mp2an 704 . 2 𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
72 fveq2 6103 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘𝑚) = (Base‘(ℤring freeLMod {0, 1})))
7372pweqd 4113 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → 𝒫 (Base‘𝑚) = 𝒫 (Base‘(ℤring freeLMod {0, 1})))
74 breq2 4587 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑠 linDepS 𝑚𝑠 linDepS (ℤring freeLMod {0, 1})))
75 fveq2 6103 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (Scalar‘𝑚) = (Scalar‘(ℤring freeLMod {0, 1})))
7675fveq2d 6107 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘(ℤring freeLMod {0, 1}))))
7776oveq1d 6564 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣})))
7875fveq2d 6107 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘(ℤring freeLMod {0, 1}))))
7978breq2d 4595 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1})))))
80 fveq2 6103 . . . . . . . . . 10 (𝑚 = (ℤring freeLMod {0, 1}) → ( linC ‘𝑚) = ( linC ‘(ℤring freeLMod {0, 1})))
8180oveqd 6566 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})))
8281neeq1d 2841 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
8379, 82imbi12d 333 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8477, 83raleqbidv 3129 . . . . . 6 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8584ralbidv 2969 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8674, 85anbi12d 743 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ (𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8773, 86rexeqbidv 3130 . . 3 (𝑚 = (ℤring freeLMod {0, 1}) → (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8887rspcev 3282 . 2 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))) → ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)))
893, 71, 88mp2an 704 1 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  𝒫 cpw 4108  {csn 4125  {cpr 4127  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158  0cc0 9815  1c1 9816  2c2 10947  3c3 10948  4c4 10949  6c6 10951  cz 11254  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  LModclmod 18686  ringzring 19637   freeLMod cfrlm 19909   linC clinc 41987   linDepS clindeps 42024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-cnfld 19568  df-zring 19638  df-dsmm 19895  df-frlm 19910  df-linc 41989  df-lininds 42025  df-lindeps 42027
This theorem is referenced by:  ldepslinc  42092
  Copyright terms: Public domain W3C validator