Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr Structured version   Visualization version   GIF version

Theorem lcvbr 33326
Description: The covers relation for a left vector space (or a left module). (cvbr 28525 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvfbr.t . . 3 (𝜑𝑇𝑆)
2 lcvfbr.u . . 3 (𝜑𝑈𝑆)
3 eleq1 2676 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑆𝑇𝑆))
43anbi1d 737 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑆𝑢𝑆) ↔ (𝑇𝑆𝑢𝑆)))
5 psseq1 3656 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑢𝑇𝑢))
6 psseq1 3656 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑠𝑇𝑠))
76anbi1d 737 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑢)))
87rexbidv 3034 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
98notbid 307 . . . . . 6 (𝑡 = 𝑇 → (¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
105, 9anbi12d 743 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)) ↔ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))))
114, 10anbi12d 743 . . . 4 (𝑡 = 𝑇 → (((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))))
12 eleq1 2676 . . . . . 6 (𝑢 = 𝑈 → (𝑢𝑆𝑈𝑆))
1312anbi2d 736 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑆𝑢𝑆) ↔ (𝑇𝑆𝑈𝑆)))
14 psseq2 3657 . . . . . 6 (𝑢 = 𝑈 → (𝑇𝑢𝑇𝑈))
15 psseq2 3657 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑠𝑢𝑠𝑈))
1615anbi2d 736 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑇𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑈)))
1716rexbidv 3034 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1817notbid 307 . . . . . 6 (𝑢 = 𝑈 → (¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1914, 18anbi12d 743 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
2013, 19anbi12d 743 . . . 4 (𝑢 = 𝑈 → (((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
21 eqid 2610 . . . 4 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}
2211, 20, 21brabg 4919 . . 3 ((𝑇𝑆𝑈𝑆) → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
231, 2, 22syl2anc 691 . 2 (𝜑 → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
24 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
25 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
26 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
2724, 25, 26lcvfbr 33325 . . 3 (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
2827breqd 4594 . 2 (𝜑 → (𝑇𝐶𝑈𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈))
291, 2jca 553 . . 3 (𝜑 → (𝑇𝑆𝑈𝑆))
3029biantrurd 528 . 2 (𝜑 → ((𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
3123, 28, 303bitr4d 299 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  wpss 3541   class class class wbr 4583  {copab 4642  cfv 5804  LSubSpclss 18753  L clcv 33323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-lcv 33324
This theorem is referenced by:  lcvbr2  33327  lcvbr3  33328  lcvpss  33329  lcvnbtwn  33330  lsatcv0  33336  mapdcv  35967
  Copyright terms: Public domain W3C validator