MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karden Structured version   Visualization version   GIF version

Theorem karden 8641
Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 9252). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 8640 justify the definition of kard. The restriction to the least rank prevents the proper class that would result from {𝑥𝑥𝐴}. (Contributed by NM, 18-Dec-2003.)
Hypotheses
Ref Expression
karden.1 𝐴 ∈ V
karden.2 𝐵 ∈ V
karden.3 𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
karden.4 𝐷 = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Assertion
Ref Expression
karden (𝐶 = 𝐷𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem karden
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 karden.1 . . . . . . . 8 𝐴 ∈ V
21enref 7874 . . . . . . 7 𝐴𝐴
3 breq1 4586 . . . . . . . 8 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
41, 3spcev 3273 . . . . . . 7 (𝐴𝐴 → ∃𝑤 𝑤𝐴)
52, 4ax-mp 5 . . . . . 6 𝑤 𝑤𝐴
6 abn0 3908 . . . . . 6 ({𝑤𝑤𝐴} ≠ ∅ ↔ ∃𝑤 𝑤𝐴)
75, 6mpbir 220 . . . . 5 {𝑤𝑤𝐴} ≠ ∅
8 scott0 8632 . . . . . 6 ({𝑤𝑤𝐴} = ∅ ↔ {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅)
98necon3bii 2834 . . . . 5 ({𝑤𝑤𝐴} ≠ ∅ ↔ {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅)
107, 9mpbi 219 . . . 4 {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅
11 rabn0 3912 . . . 4 ({𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦))
1210, 11mpbi 219 . . 3 𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)
13 vex 3176 . . . . . . . 8 𝑧 ∈ V
14 breq1 4586 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤𝐴𝑧𝐴))
1513, 14elab 3319 . . . . . . 7 (𝑧 ∈ {𝑤𝑤𝐴} ↔ 𝑧𝐴)
16 breq1 4586 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1716ralab 3334 . . . . . . 7 (∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))
1815, 17anbi12i 729 . . . . . 6 ((𝑧 ∈ {𝑤𝑤𝐴} ∧ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) ↔ (𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
19 simpl 472 . . . . . . . . 9 ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐴)
2019a1i 11 . . . . . . . 8 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐴))
21 karden.3 . . . . . . . . . . . 12 𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
22 karden.4 . . . . . . . . . . . 12 𝐷 = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2321, 22eqeq12i 2624 . . . . . . . . . . 11 (𝐶 = 𝐷 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
24 abbi 2724 . . . . . . . . . . 11 (∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
2523, 24bitr4i 266 . . . . . . . . . 10 (𝐶 = 𝐷 ↔ ∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))))
26 breq1 4586 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
27 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (rank‘𝑥) = (rank‘𝑧))
2827sseq1d 3595 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑦)))
2928imbi2d 329 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3029albidv 1836 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3126, 30anbi12d 743 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
32 breq1 4586 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
3328imbi2d 329 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3433albidv 1836 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3532, 34anbi12d 743 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
3631, 35bibi12d 334 . . . . . . . . . . 11 (𝑥 = 𝑧 → (((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))))
3736spv 2248 . . . . . . . . . 10 (∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
3825, 37sylbi 206 . . . . . . . . 9 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
39 simpl 472 . . . . . . . . 9 ((𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐵)
4038, 39syl6bi 242 . . . . . . . 8 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐵))
4120, 40jcad 554 . . . . . . 7 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → (𝑧𝐴𝑧𝐵)))
42 ensym 7891 . . . . . . . 8 (𝑧𝐴𝐴𝑧)
43 entr 7894 . . . . . . . 8 ((𝐴𝑧𝑧𝐵) → 𝐴𝐵)
4442, 43sylan 487 . . . . . . 7 ((𝑧𝐴𝑧𝐵) → 𝐴𝐵)
4541, 44syl6 34 . . . . . 6 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝐴𝐵))
4618, 45syl5bi 231 . . . . 5 (𝐶 = 𝐷 → ((𝑧 ∈ {𝑤𝑤𝐴} ∧ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) → 𝐴𝐵))
4746expd 451 . . . 4 (𝐶 = 𝐷 → (𝑧 ∈ {𝑤𝑤𝐴} → (∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴𝐵)))
4847rexlimdv 3012 . . 3 (𝐶 = 𝐷 → (∃𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴𝐵))
4912, 48mpi 20 . 2 (𝐶 = 𝐷𝐴𝐵)
50 enen2 7986 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
51 enen2 7986 . . . . . . 7 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
5251imbi1d 330 . . . . . 6 (𝐴𝐵 → ((𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))
5352albidv 1836 . . . . 5 (𝐴𝐵 → (∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))
5450, 53anbi12d 743 . . . 4 (𝐴𝐵 → ((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))))
5554abbidv 2728 . . 3 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
5655, 21, 223eqtr4g 2669 . 2 (𝐴𝐵𝐶 = 𝐷)
5749, 56impbii 198 1 (𝐶 = 𝐷𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  cfv 5804  cen 7838  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-r1 8510  df-rank 8511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator