Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Structured version   Visualization version   GIF version

Theorem jm2.20nn 36582
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 1054 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
2 nnz 11276 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
323ad2ant3 1077 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 frmy 36497 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
54fovcl 6663 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
61, 3, 5syl2anc 691 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
76zcnd 11359 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
87adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℂ)
98sqvald 12867 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
10 zsqcl 12796 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℤ → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
116, 10syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1211adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
13 frmx 36496 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1413fovcl 6663 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
151, 3, 14syl2anc 691 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0zd 11356 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℤ)
1716adantr 480 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ∈ ℤ)
187sqvald 12867 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
1918adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) = ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)))
20 simpr 476 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
2119, 20eqbrtrrd 4607 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀))
22 nnz 11276 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
23223ad2ant2 1076 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
244fovcl 6663 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
251, 23, 24syl2anc 691 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℤ)
26 muldvds1 14844 . . . . . . . . . . . . . 14 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
276, 6, 25, 26syl3anc 1318 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2827adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ (𝐴 Yrm 𝑀) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
2921, 28mpd 15 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀))
30 simpl1 1057 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝐴 ∈ (ℤ‘2))
313adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℤ)
3223adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℤ)
33 jm2.19 36578 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3430, 31, 32, 33syl3anc 1318 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝐴 Yrm 𝑁) ∥ (𝐴 Yrm 𝑀)))
3529, 34mpbird 246 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁𝑀)
36 simpl2 1058 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑀 ∈ ℕ)
37 simpl3 1059 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ∈ ℕ)
38 nndivdvds 14827 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
3936, 37, 38syl2anc 691 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4035, 39mpbid 221 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℕ)
41 nnm1nn0 11211 . . . . . . . . 9 ((𝑀 / 𝑁) ∈ ℕ → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
4240, 41syl 17 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) − 1) ∈ ℕ0)
43 zexpcl 12737 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4417, 42, 43syl2anc 691 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ)
4540nnzd 11357 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℤ)
466adantr 480 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4745, 46zmulcld 11364 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ)
4825adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℤ)
49 nncn 10905 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
50493ad2ant2 1076 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
51 nncn 10905 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
52513ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
53 nnne0 10930 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
54533ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
5550, 52, 54divcan2d 10682 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5655oveq2d 6565 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
5756, 25eqeltrd 2688 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5857adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) ∈ ℤ)
5944, 46zmulcld 11364 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
6045, 59zmulcld 11364 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
6158, 60zsubcld 11363 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
62 3nn0 11187 . . . . . . . . . . . . 13 3 ∈ ℕ0
6362a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℕ0)
64 zexpcl 12737 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
656, 63, 64syl2anc 691 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
6665adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
67 2nn0 11186 . . . . . . . . . . . . 13 2 ∈ ℕ0
6867a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℕ0)
69 3z 11287 . . . . . . . . . . . . . 14 3 ∈ ℤ
70 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
71 3re 10971 . . . . . . . . . . . . . . 15 3 ∈ ℝ
72 2lt3 11072 . . . . . . . . . . . . . . 15 2 < 3
7370, 71, 72ltleii 10039 . . . . . . . . . . . . . 14 2 ≤ 3
74 2z 11286 . . . . . . . . . . . . . . 15 2 ∈ ℤ
7574eluz1i 11571 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
7669, 73, 75mpbir2an 957 . . . . . . . . . . . . 13 3 ∈ (ℤ‘2)
7776a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ (ℤ‘2))
78 dvdsexp 14887 . . . . . . . . . . . 12 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 2 ∈ ℕ0 ∧ 3 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
796, 68, 77, 78syl3anc 1318 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
8079adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3))
81 jm2.23 36581 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8230, 31, 40, 81syl3anc 1318 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
83 dvdstr 14856 . . . . . . . . . . 11 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8483imp 444 . . . . . . . . . 10 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
8512, 66, 61, 80, 82, 84syl32anc 1326 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
86 dvds2sub 14854 . . . . . . . . . 10 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))))
8786imp 444 . . . . . . . . 9 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8812, 48, 61, 20, 85, 87syl32anc 1326 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
8955adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
9089oveq2d 6565 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) = (𝐴 Yrm 𝑀))
9190oveq1d 6564 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) = ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
9291oveq2d 6565 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
9325zcnd 11359 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑀) ∈ ℂ)
9493adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑀) ∈ ℂ)
9560zcnd 11359 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℂ)
9694, 95nncand 10276 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
9745zcnd 11359 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑀 / 𝑁) ∈ ℂ)
9844zcnd 11359 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℂ)
9997, 98, 8mul12d 10124 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
10096, 99eqtrd 2644 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm 𝑀) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
10192, 100eqtrd 2644 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑀) − ((𝐴 Yrm (𝑁 · (𝑀 / 𝑁))) − ((𝑀 / 𝑁) · (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) = (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
10288, 101breqtrd 4609 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
103 gcdcom 15073 . . . . . . . . . . 11 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)))
1046, 16, 103syl2anc 691 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)))
105 jm2.19lem1 36574 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
1061, 3, 105syl2anc 691 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁) gcd (𝐴 Yrm 𝑁)) = 1)
107104, 106eqtrd 2644 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
108107adantr 480 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1)
10967a1i 11 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 2 ∈ ℕ0)
110 rpexp12i 15272 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ ∧ (2 ∈ ℕ0 ∧ ((𝑀 / 𝑁) − 1) ∈ ℕ0)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
11146, 17, 109, 42, 110syl112anc 1322 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) gcd (𝐴 Xrm 𝑁)) = 1 → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1))
112108, 111mpd 15 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)
113 coprmdvds 15204 . . . . . . . 8 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))))
114113imp 444 . . . . . . 7 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) ∈ ℤ ∧ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1)) · ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁))) ∧ (((𝐴 Yrm 𝑁)↑2) gcd ((𝐴 Xrm 𝑁)↑((𝑀 / 𝑁) − 1))) = 1)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
11512, 44, 47, 102, 112, 114syl32anc 1326 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
1169, 115eqbrtrrd 4607 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)))
117 rmy0 36512 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1181173ad2ant1 1075 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
119 nngt0 10926 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < 𝑁)
1201193ad2ant3 1077 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
121 0zd 11266 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
122 ltrmy 36537 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
1231, 121, 3, 122syl3anc 1318 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
124120, 123mpbid 221 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
125118, 124eqbrtrrd 4607 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
126 elnnz 11264 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ ↔ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ 0 < (𝐴 Yrm 𝑁)))
1276, 125, 126sylanbrc 695 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ)
128 nnne0 10930 . . . . . . . 8 ((𝐴 Yrm 𝑁) ∈ ℕ → (𝐴 Yrm 𝑁) ≠ 0)
129127, 128syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ≠ 0)
130129adantr 480 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ≠ 0)
131 dvdsmulcr 14849 . . . . . 6 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ≠ 0)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
13246, 45, 46, 130, 131syl112anc 1322 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁)) ∥ ((𝑀 / 𝑁) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
133116, 132mpbid 221 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁))
13454adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → 𝑁 ≠ 0)
135 dvdscmulr 14848 . . . . 5 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
13646, 45, 31, 134, 135syl112anc 1322 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)) ↔ (𝐴 Yrm 𝑁) ∥ (𝑀 / 𝑁)))
137133, 136mpbird 246 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ (𝑁 · (𝑀 / 𝑁)))
138137, 89breqtrd 4609 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
13911adantr 480 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∈ ℤ)
1403, 6zmulcld 11364 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
1414fovcl 6663 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
1421, 140, 141syl2anc 691 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
143142adantr 480 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ)
14425adantr 480 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ)
145 nnm1nn0 11211 . . . . . . . . 9 ((𝐴 Yrm 𝑁) ∈ ℕ → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
146127, 145syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0)
147 zexpcl 12737 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) − 1) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
14816, 146, 147syl2anc 691 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ)
149 dvdsmul2 14842 . . . . . . 7 ((((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑2) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
150148, 11, 149syl2anc 691 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)))
15118oveq2d 6565 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))))
152148zcnd 11359 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) ∈ ℂ)
153152, 7, 7mul12d 10124 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑁))) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
154151, 153eqtrd 2644 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · ((𝐴 Yrm 𝑁)↑2)) = ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
155150, 154breqtrd 4609 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))
156148, 6zmulcld 11364 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℤ)
1576, 156zmulcld 11364 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ)
158142, 157zsubcld 11363 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ)
159 jm2.23 36581 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
1601, 3, 127, 159syl3anc 1318 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
161 dvdstr 14856 . . . . . . . 8 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))))
162161imp 444 . . . . . . 7 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ ∧ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁)↑3) ∧ ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
16311, 65, 158, 79, 160, 162syl32anc 1326 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
164 dvdssub2 14861 . . . . . 6 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℤ) ∧ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) − ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁))))) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
16511, 142, 157, 163, 164syl31anc 1321 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ↔ ((𝐴 Yrm 𝑁)↑2) ∥ ((𝐴 Yrm 𝑁) · (((𝐴 Xrm 𝑁)↑((𝐴 Yrm 𝑁) − 1)) · (𝐴 Yrm 𝑁)))))
166155, 165mpbird 246 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
167166adantr 480 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))))
168 simpr 476 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)
169 simpl1 1057 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
170140adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ)
17123adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → 𝑀 ∈ ℤ)
172 jm2.19 36578 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
173169, 170, 171, 172syl3anc 1318 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀 ↔ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)))
174168, 173mpbid 221 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))
175 dvdstr 14856 . . . 4 ((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → ((((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀)) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀)))
176175imp 444 . . 3 (((((𝐴 Yrm 𝑁)↑2) ∈ ℤ ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∧ (𝐴 Yrm (𝑁 · (𝐴 Yrm 𝑁))) ∥ (𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
177139, 143, 144, 167, 174, 176syl32anc 1326 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀) → ((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀))
178138, 177impbida 873 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  0cn0 11169  cz 11254  cuz 11563  cexp 12722  cdvds 14821   gcd cgcd 15054   Xrm crmx 36482   Yrm crmy 36483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485
This theorem is referenced by:  jm2.27a  36590  jm2.27c  36592
  Copyright terms: Public domain W3C validator