Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Structured version   Visualization version   GIF version

Theorem jm2.17a 36545
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))

Proof of Theorem jm2.17a
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . 5 (𝑎 = 0 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑0))
2 oveq1 6556 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
32oveq2d 6565 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
41, 3breq12d 4596 . . . 4 (𝑎 = 0 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1))))
54imbi2d 329 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))))
6 oveq2 6557 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑏))
7 oveq1 6556 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
87oveq2d 6565 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
96, 8breq12d 4596 . . . 4 (𝑎 = 𝑏 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
109imbi2d 329 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))))
11 oveq2 6557 . . . . 5 (𝑎 = (𝑏 + 1) → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑(𝑏 + 1)))
12 oveq1 6556 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1312oveq2d 6565 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
1411, 13breq12d 4596 . . . 4 (𝑎 = (𝑏 + 1) → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1))))
1514imbi2d 329 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
16 oveq2 6557 . . . . 5 (𝑎 = 𝑁 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑁))
17 oveq1 6556 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1817oveq2d 6565 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
1916, 18breq12d 4596 . . . 4 (𝑎 = 𝑁 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
2019imbi2d 329 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))))
21 1le1 10534 . . . . 5 1 ≤ 1
2221a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ≤ 1)
23 2cn 10968 . . . . . . 7 2 ∈ ℂ
24 eluzelcn 11575 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25 mulcl 9899 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
2623, 24, 25sylancr 694 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
27 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
28 subcl 10159 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝐴) − 1) ∈ ℂ)
2926, 27, 28sylancl 693 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℂ)
3029exp0d 12864 . . . 4 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) = 1)
31 0p1e1 11009 . . . . . 6 (0 + 1) = 1
3231oveq2i 6560 . . . . 5 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
33 rmy1 36513 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3432, 33syl5eq 2656 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
3522, 30, 343brtr4d 4615 . . 3 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))
36 2re 10967 . . . . . . . . . 10 2 ∈ ℝ
37 eluzelre 11574 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3837adantl 481 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
39 remulcl 9900 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
4036, 38, 39sylancr 694 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
41 1re 9918 . . . . . . . . 9 1 ∈ ℝ
42 resubcl 10224 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝐴) − 1) ∈ ℝ)
4340, 41, 42sylancl 693 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) − 1) ∈ ℝ)
44 peano2nn0 11210 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
4544adantr 480 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
4643, 45reexpcld 12887 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
47463adant3 1074 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
48 simpr 476 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
49 nn0z 11277 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
5049adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
5150peano2zd 11361 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
52 frmy 36497 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5352fovcl 6663 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5453zred 11358 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5548, 51, 54syl2anc 691 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5655, 43remulcld 9949 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
57563adant3 1074 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
5851peano2zd 11361 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
5952fovcl 6663 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
6059zred 11358 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
6148, 58, 60syl2anc 691 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
62613adant3 1074 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
63293ad2ant2 1076 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((2 · 𝐴) − 1) ∈ ℂ)
64 simp1 1054 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → 𝑏 ∈ ℕ0)
6563, 64expp1d 12871 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) = ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)))
66 simpl 472 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6743, 66reexpcld 12887 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑𝑏) ∈ ℝ)
68 2nn 11062 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 11602 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
7069adantl 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
71 nnmulcl 10920 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7268, 70, 71sylancr 694 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℕ)
73 nnm1nn0 11211 . . . . . . . . . . 11 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) − 1) ∈ ℕ0)
74 nn0ge0 11195 . . . . . . . . . . 11 (((2 · 𝐴) − 1) ∈ ℕ0 → 0 ≤ ((2 · 𝐴) − 1))
7572, 73, 743syl 18 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝐴) − 1))
7643, 75jca 553 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1)))
7767, 55, 763jca 1235 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))))
78 lemul1a 10756 . . . . . . . 8 ((((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
7977, 78stoic3 1692 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
8065, 79eqbrtrd 4605 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
81 nn0cn 11179 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
8281adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
83 pncan 10166 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
8482, 27, 83sylancl 693 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
8584oveq2d 6565 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
8652fovcl 6663 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
8786zred 11358 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
8848, 50, 87syl2anc 691 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
8985, 88eqeltrd 2688 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
90 remulcl 9900 . . . . . . . . . 10 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9155, 41, 90sylancl 693 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9240, 55remulcld 9949 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
93 nn0re 11178 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
9493adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
9594lep1d 10834 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ≤ (𝑏 + 1))
96 lermy 36540 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9748, 50, 51, 96syl3anc 1318 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9895, 97mpbid 221 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))
9955recnd 9947 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℂ)
10099mulid1d 9936 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) = (𝐴 Yrm (𝑏 + 1)))
10198, 85, 1003brtr4d 4615 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · 1))
10289, 91, 92, 101lesub2dd 10523 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)) ≤ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
10340recnd 9947 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
10427a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 1 ∈ ℂ)
10599, 103, 104subdid 10365 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
10699, 103mulcomd 9940 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
107106oveq1d 6564 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
108105, 107eqtrd 2644 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
109 rmyluc2 36521 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
11048, 51, 109syl2anc 691 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
111102, 108, 1103brtr4d 4615 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1121113adant3 1074 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
11347, 57, 62, 80, 112letrd 10073 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1141133exp 1256 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
115114a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
1165, 10, 15, 20, 35, 115nn0ind 11348 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
117116impcom 445 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cexp 12722   Yrm crmy 36483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485
This theorem is referenced by:  jm3.1lem1  36602
  Copyright terms: Public domain W3C validator