MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmd Structured version   Visualization version   GIF version

Theorem issubmd 17172
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
issubmd.b 𝐵 = (Base‘𝑀)
issubmd.p + = (+g𝑀)
issubmd.z 0 = (0g𝑀)
issubmd.m (𝜑𝑀 ∈ Mnd)
issubmd.cz (𝜑𝜒)
issubmd.cp ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
issubmd.ch (𝑧 = 0 → (𝜓𝜒))
issubmd.th (𝑧 = 𝑥 → (𝜓𝜃))
issubmd.ta (𝑧 = 𝑦 → (𝜓𝜏))
issubmd.et (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
Assertion
Ref Expression
issubmd (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑥,𝑦   𝑧, +   𝑧, 0   𝜒,𝑧   𝜂,𝑧   𝜏,𝑧   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑧)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑥,𝑦)   + (𝑥,𝑦)   𝑀(𝑧)   0 (𝑥,𝑦)

Proof of Theorem issubmd
StepHypRef Expression
1 ssrab2 3650 . . 3 {𝑧𝐵𝜓} ⊆ 𝐵
21a1i 11 . 2 (𝜑 → {𝑧𝐵𝜓} ⊆ 𝐵)
3 issubmd.m . . . 4 (𝜑𝑀 ∈ Mnd)
4 issubmd.b . . . . 5 𝐵 = (Base‘𝑀)
5 issubmd.z . . . . 5 0 = (0g𝑀)
64, 5mndidcl 17131 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
73, 6syl 17 . . 3 (𝜑0𝐵)
8 issubmd.cz . . 3 (𝜑𝜒)
9 issubmd.ch . . . 4 (𝑧 = 0 → (𝜓𝜒))
109elrab 3331 . . 3 ( 0 ∈ {𝑧𝐵𝜓} ↔ ( 0𝐵𝜒))
117, 8, 10sylanbrc 695 . 2 (𝜑0 ∈ {𝑧𝐵𝜓})
12 issubmd.th . . . . . 6 (𝑧 = 𝑥 → (𝜓𝜃))
1312elrab 3331 . . . . 5 (𝑥 ∈ {𝑧𝐵𝜓} ↔ (𝑥𝐵𝜃))
14 issubmd.ta . . . . . 6 (𝑧 = 𝑦 → (𝜓𝜏))
1514elrab 3331 . . . . 5 (𝑦 ∈ {𝑧𝐵𝜓} ↔ (𝑦𝐵𝜏))
1613, 15anbi12i 729 . . . 4 ((𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓}) ↔ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)))
173adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑀 ∈ Mnd)
18 simprll 798 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑥𝐵)
19 simprrl 800 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑦𝐵)
20 issubmd.p . . . . . . 7 + = (+g𝑀)
214, 20mndcl 17124 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
2217, 18, 19, 21syl3anc 1318 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ 𝐵)
23 an4 861 . . . . . 6 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏)))
24 issubmd.cp . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
2523, 24sylan2b 491 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝜂)
26 issubmd.et . . . . . 6 (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
2726elrab 3331 . . . . 5 ((𝑥 + 𝑦) ∈ {𝑧𝐵𝜓} ↔ ((𝑥 + 𝑦) ∈ 𝐵𝜂))
2822, 25, 27sylanbrc 695 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2916, 28sylan2b 491 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓})) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
3029ralrimivva 2954 . 2 (𝜑 → ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
314, 5, 20issubm 17170 . . 3 (𝑀 ∈ Mnd → ({𝑧𝐵𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵0 ∈ {𝑧𝐵𝜓} ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
323, 31syl 17 . 2 (𝜑 → ({𝑧𝐵𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵0 ∈ {𝑧𝐵𝜓} ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
332, 11, 30, 32mpbir3and 1238 1 (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117  SubMndcsubmnd 17157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159
This theorem is referenced by:  mrcmndind  17189
  Copyright terms: Public domain W3C validator