Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isriscg Structured version   Visualization version   GIF version

Theorem isriscg 32953
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
isriscg ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem isriscg
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . 4 (𝑟 = 𝑅 → (𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps))
21anbi1d 737 . . 3 (𝑟 = 𝑅 → ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps)))
3 oveq1 6556 . . . . 5 (𝑟 = 𝑅 → (𝑟 RngIso 𝑠) = (𝑅 RngIso 𝑠))
43eleq2d 2673 . . . 4 (𝑟 = 𝑅 → (𝑓 ∈ (𝑟 RngIso 𝑠) ↔ 𝑓 ∈ (𝑅 RngIso 𝑠)))
54exbidv 1837 . . 3 (𝑟 = 𝑅 → (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠)))
62, 5anbi12d 743 . 2 (𝑟 = 𝑅 → (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠))))
7 eleq1 2676 . . . 4 (𝑠 = 𝑆 → (𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps))
87anbi2d 736 . . 3 (𝑠 = 𝑆 → ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps)))
9 oveq2 6557 . . . . 5 (𝑠 = 𝑆 → (𝑅 RngIso 𝑠) = (𝑅 RngIso 𝑆))
109eleq2d 2673 . . . 4 (𝑠 = 𝑆 → (𝑓 ∈ (𝑅 RngIso 𝑠) ↔ 𝑓 ∈ (𝑅 RngIso 𝑆)))
1110exbidv 1837 . . 3 (𝑠 = 𝑆 → (∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))
128, 11anbi12d 743 . 2 (𝑠 = 𝑆 → (((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
13 df-risc 32952 . 2 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))}
146, 12, 13brabg 4919 1 ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977   class class class wbr 4583  (class class class)co 6549  RingOpscrngo 32863   RngIso crngiso 32930  𝑟 crisc 32931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-iota 5768  df-fv 5812  df-ov 6552  df-risc 32952
This theorem is referenced by:  isrisc  32954  risc  32955
  Copyright terms: Public domain W3C validator