Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Visualization version   GIF version

Theorem ismrer1 32807
Description: An isometry between and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
ismrer1.2 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
Assertion
Ref Expression
ismrer1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem ismrer1
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4135 . . . . . . . 8 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21xpeq1d 5062 . . . . . . 7 (𝑦 = 𝐴 → ({𝑦} × {𝑥}) = ({𝐴} × {𝑥}))
32mpteq2dv 4673 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})))
4 ismrer1.2 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
53, 4syl6eqr 2662 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹)
6 f1oeq1 6040 . . . . 5 ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦})))
75, 6syl 17 . . . 4 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦})))
81oveq2d 6565 . . . . 5 (𝑦 = 𝐴 → (ℝ ↑𝑚 {𝑦}) = (ℝ ↑𝑚 {𝐴}))
9 f1oeq3 6042 . . . . 5 ((ℝ ↑𝑚 {𝑦}) = (ℝ ↑𝑚 {𝐴}) → (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴})))
108, 9syl 17 . . . 4 (𝑦 = 𝐴 → (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴})))
117, 10bitrd 267 . . 3 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴})))
12 eqid 2610 . . . 4 {𝑦} = {𝑦}
13 reex 9906 . . . 4 ℝ ∈ V
14 vex 3176 . . . 4 𝑦 ∈ V
15 eqid 2610 . . . 4 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥}))
1612, 13, 14, 15mapsnf1o3 7792 . . 3 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦})
1711, 16vtoclg 3239 . 2 (𝐴𝑉𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}))
18 sneq 4135 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1918xpeq2d 5063 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑦}))
20 snex 4835 . . . . . . . . . . . . . . . . 17 {𝐴} ∈ V
21 snex 4835 . . . . . . . . . . . . . . . . 17 {𝑥} ∈ V
2220, 21xpex 6860 . . . . . . . . . . . . . . . 16 ({𝐴} × {𝑥}) ∈ V
2319, 4, 22fvmpt3i 6196 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = ({𝐴} × {𝑦}))
2423fveq1d 6105 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
2524adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
26 snidg 4153 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 ∈ {𝐴})
27 fvconst2g 6372 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2814, 26, 27sylancr 694 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2925, 28sylan9eqr 2666 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)‘𝐴) = 𝑦)
30 sneq 4135 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3130xpeq2d 5063 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑧}))
3231, 4, 22fvmpt3i 6196 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = ({𝐴} × {𝑧}))
3332fveq1d 6105 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
3433adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
35 vex 3176 . . . . . . . . . . . . . 14 𝑧 ∈ V
36 fvconst2g 6372 . . . . . . . . . . . . . 14 ((𝑧 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3735, 26, 36sylancr 694 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3834, 37sylan9eqr 2666 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑧)‘𝐴) = 𝑧)
3929, 38oveq12d 6567 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)) = (𝑦𝑧))
4039oveq1d 6564 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((𝑦𝑧)↑2))
41 resubcl 10224 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℝ)
4241adantl 481 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℝ)
43 absresq 13890 . . . . . . . . . . 11 ((𝑦𝑧) ∈ ℝ → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4442, 43syl 17 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4540, 44eqtr4d 2647 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((abs‘(𝑦𝑧))↑2))
4642recnd 9947 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℂ)
4746abscld 14023 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℝ)
4847recnd 9947 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℂ)
4948sqcld 12868 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) ∈ ℂ)
5045, 49eqeltrd 2688 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ)
51 fveq2 6103 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝐴))
52 fveq2 6103 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑧)‘𝑘) = ((𝐹𝑧)‘𝐴))
5351, 52oveq12d 6567 . . . . . . . . . 10 (𝑘 = 𝐴 → (((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘)) = (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)))
5453oveq1d 6564 . . . . . . . . 9 (𝑘 = 𝐴 → ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5554sumsn 14319 . . . . . . . 8 ((𝐴𝑉 ∧ ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5650, 55syldan 486 . . . . . . 7 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5756, 45eqtrd 2644 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((abs‘(𝑦𝑧))↑2))
5857fveq2d 6107 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (√‘((abs‘(𝑦𝑧))↑2)))
5946absge0d 14031 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 0 ≤ (abs‘(𝑦𝑧)))
6047, 59sqrtsqd 14006 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘((abs‘(𝑦𝑧))↑2)) = (abs‘(𝑦𝑧)))
6158, 60eqtrd 2644 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (abs‘(𝑦𝑧)))
62 f1of 6050 . . . . . . . 8 (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}) → 𝐹:ℝ⟶(ℝ ↑𝑚 {𝐴}))
6317, 62syl 17 . . . . . . 7 (𝐴𝑉𝐹:ℝ⟶(ℝ ↑𝑚 {𝐴}))
6463ffvelrnda 6267 . . . . . 6 ((𝐴𝑉𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}))
6563ffvelrnda 6267 . . . . . 6 ((𝐴𝑉𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴}))
6664, 65anim12dan 878 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴})))
67 snfi 7923 . . . . . 6 {𝐴} ∈ Fin
68 eqid 2610 . . . . . . 7 (ℝ ↑𝑚 {𝐴}) = (ℝ ↑𝑚 {𝐴})
6968rrnmval 32797 . . . . . 6 (({𝐴} ∈ Fin ∧ (𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7067, 69mp3an1 1403 . . . . 5 (((𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7166, 70syl 17 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
72 ismrer1.1 . . . . . 6 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
7372remetdval 22400 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7473adantl 481 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7561, 71, 743eqtr4rd 2655 . . 3 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7675ralrimivva 2954 . 2 (𝐴𝑉 → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7772rexmet 22402 . . 3 𝑅 ∈ (∞Met‘ℝ)
7868rrnmet 32798 . . . 4 ({𝐴} ∈ Fin → (ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑𝑚 {𝐴})))
79 metxmet 21949 . . . 4 ((ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑𝑚 {𝐴})) → (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑𝑚 {𝐴})))
8067, 78, 79mp2b 10 . . 3 (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑𝑚 {𝐴}))
81 isismty 32770 . . 3 ((𝑅 ∈ (∞Met‘ℝ) ∧ (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑𝑚 {𝐴}))) → (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))))
8277, 80, 81mp2an 704 . 2 (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧))))
8317, 76, 82sylanbrc 695 1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {csn 4125  cmpt 4643   × cxp 5036  cres 5040  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  cc 9813  cr 9814  cmin 10145  2c2 10947  cexp 12722  csqrt 13821  abscabs 13822  Σcsu 14264  ∞Metcxmt 19552  Metcme 19553   Ismty cismty 32767  ncrrn 32794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ismty 32768  df-rrn 32795
This theorem is referenced by:  reheibor  32808
  Copyright terms: Public domain W3C validator