Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismblfin Structured version   Visualization version   GIF version

Theorem ismblfin 32620
Description: Measurability in terms of inner and outer measure. Proposition 7 of [Viaclovsky8] p. 3. (Contributed by Brendan Leahy, 4-Mar-2018.) (Revised by Brendan Leahy, 28-Mar-2018.)
Assertion
Ref Expression
ismblfin ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))
Distinct variable group:   𝑦,𝑏,𝐴

Proof of Theorem ismblfin
Dummy variables 𝑎 𝑐 𝑓 𝑡 𝑢 𝑣 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mblfinlem4 32619 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) → (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ))
2 elpwi 4117 . . . . 5 (𝑤 ∈ 𝒫 ℝ → 𝑤 ⊆ ℝ)
3 elmapi 7765 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss1 3795 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐴) ⊆ 𝑤
5 ovolsscl 23061 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝐴) ⊆ 𝑤𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
64, 5mp3an1 1403 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
7 difss 3699 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐴) ⊆ 𝑤
8 ovolsscl 23061 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝐴) ⊆ 𝑤𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
97, 8mp3an1 1403 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
106, 9readdcld 9948 . . . . . . . . . . . . . . . . . 18 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ)
1110rexrd 9968 . . . . . . . . . . . . . . . . 17 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*)
1211ad3antlr 763 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*)
13 rncoss 5307 . . . . . . . . . . . . . . . . . . 19 ran ((,) ∘ 𝑓) ⊆ ran (,)
1413unissi 4397 . . . . . . . . . . . . . . . . . 18 ran ((,) ∘ 𝑓) ⊆ ran (,)
15 unirnioo 12144 . . . . . . . . . . . . . . . . . 18 ℝ = ran (,)
1614, 15sseqtr4i 3601 . . . . . . . . . . . . . . . . 17 ran ((,) ∘ 𝑓) ⊆ ℝ
17 ovolcl 23053 . . . . . . . . . . . . . . . . 17 ( ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*)
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*)
19 eqid 2610 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
20 eqid 2610 . . . . . . . . . . . . . . . . . . 19 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
2119, 20ovolsf 23048 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
22 frn 5966 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
23 icossxr 12129 . . . . . . . . . . . . . . . . . . 19 (0[,)+∞) ⊆ ℝ*
2422, 23syl6ss 3580 . . . . . . . . . . . . . . . . . 18 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
25 supxrcl 12017 . . . . . . . . . . . . . . . . . 18 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2621, 24, 253syl 18 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2726ad2antlr 759 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
28 pnfge 11840 . . . . . . . . . . . . . . . . . . . . . 22 (((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ* → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ +∞)
2911, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ +∞)
3029ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ +∞)
31 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → (vol*‘ ran ((,) ∘ 𝑓)) = +∞)
3230, 31breqtrrd 4611 . . . . . . . . . . . . . . . . . . 19 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
3332adantlll 750 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
3416, 17ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*
35 nltpnft 11871 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ* → ((vol*‘ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < +∞))
3634, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < +∞)
3736necon2abii 2832 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘ ran ((,) ∘ 𝑓)) < +∞ ↔ (vol*‘ ran ((,) ∘ 𝑓)) ≠ +∞)
38 ovolge0 23056 . . . . . . . . . . . . . . . . . . . . . 22 ( ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
3916, 38ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ (vol*‘ ran ((,) ∘ 𝑓))
40 0re 9919 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
41 xrre3 11876 . . . . . . . . . . . . . . . . . . . . . 22 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧ 0 ∈ ℝ) ∧ (0 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) < +∞)) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4234, 40, 41mpanl12 714 . . . . . . . . . . . . . . . . . . . . 21 ((0 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) < +∞) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4339, 42mpan 702 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘ ran ((,) ∘ 𝑓)) < +∞ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4437, 43sylbir 224 . . . . . . . . . . . . . . . . . . 19 ((vol*‘ ran ((,) ∘ 𝑓)) ≠ +∞ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4510ad3antlr 763 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ)
46 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 = (vol‘𝑎))
47 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑎 → (𝑏 ∈ dom vol ↔ 𝑎 ∈ dom vol))
48 uniretop 22376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ℝ = (topGen‘ran (,))
4948cldss 20643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ)
50 dfss4 3820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝑏)) = 𝑏)
5149, 50sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖ 𝑏)) = 𝑏)
52 rembl 23115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ℝ ∈ dom vol
5348cldopn 20645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran (,)))
54 opnmbl 23176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((ℝ ∖ 𝑏) ∈ (topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol)
56 difmbl 23118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((ℝ ∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖ (ℝ ∖ 𝑏)) ∈ dom vol)
5752, 55, 56sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖ 𝑏)) ∈ dom vol)
5851, 57eqeltrrd 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol)
5947, 58vtoclga 3245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ (Clsd‘(topGen‘ran (,))) → 𝑎 ∈ dom vol)
60 mblvol 23105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ dom vol → (vol‘𝑎) = (vol*‘𝑎))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘𝑎) = (vol*‘𝑎))
6246, 61sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑧 = (vol*‘𝑎))
6362adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 = (vol*‘𝑎))
64 inss1 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓)
65 sstr 3576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓)) → 𝑎 ran ((,) ∘ 𝑓))
6664, 65mpan2 703 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) → 𝑎 ran ((,) ∘ 𝑓))
6766ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑎 ran ((,) ∘ 𝑓))
68 ovolsscl 23061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
6916, 68mp3an2 1404 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
7069ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ran ((,) ∘ 𝑓)) → (vol*‘𝑎) ∈ ℝ)
7167, 70sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → (vol*‘𝑎) ∈ ℝ)
7263, 71eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 ∈ ℝ)
7372rexlimdvaa 3014 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 ∈ ℝ))
7473abssdv 3639 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ)
75 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 → (𝑧 = (vol‘𝑎) ↔ 𝑦 = (vol‘𝑎)))
7675anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))))
7776rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))))
7877ralab 3334 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
79 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 = (vol‘𝑎))
8079, 61sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 = (vol*‘𝑎))
81 ovolss 23060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘𝑎) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8266, 16, 81sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) → (vol*‘𝑎) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8382ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → (vol*‘𝑎) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8480, 83eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8584rexlimiva 3010 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8678, 85mpgbir 1717 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))
87 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (vol*‘ ran ((,) ∘ 𝑓)) → (𝑦𝑥𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
8887ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (vol*‘ ran ((,) ∘ 𝑓)) → (∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥 ↔ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
8988rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥)
9086, 89mpan2 703 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥)
91 retop 22375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) ∈ Top
92 0cld 20652 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((topGen‘ran (,)) ∈ Top → ∅ ∈ (Clsd‘(topGen‘ran (,))))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ∅ ∈ (Clsd‘(topGen‘ran (,)))
94 0ss 3924 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴)
95 0mbl 23114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ∅ ∈ dom vol
96 mblvol 23105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
9795, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (vol‘∅) = (vol*‘∅)
98 ovol0 23068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (vol*‘∅) = 0
9997, 98eqtr2i 2633 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 = (vol‘∅)
10094, 99pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))
101 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = ∅ → (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ ∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴)))
102 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 = ∅ → (vol‘𝑎) = (vol‘∅))
103102eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = ∅ → (0 = (vol‘𝑎) ↔ 0 = (vol‘∅)))
104101, 103anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = ∅ → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) ↔ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))))
105104rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))) → ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))
10693, 100, 105mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))
107 c0ex 9913 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ V
108 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 0 → (𝑧 = (vol‘𝑎) ↔ 0 = (vol‘𝑎)))
109108anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 0 → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))))
110109rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))))
111107, 110elab 3319 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))
112106, 111mpbir 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}
113112ne0ii 3882 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅
114 suprcl 10862 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈ ℝ)
115113, 114mp3an2 1404 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈ ℝ)
11674, 90, 115syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈ ℝ)
117 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 = (vol‘𝑐))
118 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑐 → (𝑏 ∈ dom vol ↔ 𝑐 ∈ dom vol))
119118, 58vtoclga 3245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → 𝑐 ∈ dom vol)
120 mblvol 23105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ dom vol → (vol‘𝑐) = (vol*‘𝑐))
121119, 120syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘𝑐) = (vol*‘𝑐))
122117, 121sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑧 = (vol*‘𝑐))
123122adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 = (vol*‘𝑐))
124 difss2 3701 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) → 𝑐 ran ((,) ∘ 𝑓))
125124ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑐 ran ((,) ∘ 𝑓))
126 ovolsscl 23061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
12716, 126mp3an2 1404 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
128127ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ran ((,) ∘ 𝑓)) → (vol*‘𝑐) ∈ ℝ)
129125, 128sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)))) → (vol*‘𝑐) ∈ ℝ)
130123, 129eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 ∈ ℝ)
131130rexlimdvaa 3014 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 ∈ ℝ))
132131abssdv 3639 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ)
133 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 → (𝑧 = (vol‘𝑐) ↔ 𝑦 = (vol‘𝑐)))
134133anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))))
135134rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))))
136135ralab 3334 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
137 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 = (vol‘𝑐))
138137, 121sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 = (vol*‘𝑐))
139 ovolss 23060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
140124, 16, 139sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
141140ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
142138, 141eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
143142rexlimiva 3010 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
144136, 143mpgbir 1717 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))
14587ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (vol*‘ ran ((,) ∘ 𝑓)) → (∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥 ↔ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
146145rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥)
147144, 146mpan2 703 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥)
148 0ss 3924 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)
149148, 99pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))
150 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = ∅ → (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ↔ ∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
151 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = ∅ → (vol‘𝑐) = (vol‘∅))
152151eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = ∅ → (0 = (vol‘𝑐) ↔ 0 = (vol‘∅)))
153150, 152anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = ∅ → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)) ↔ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))))
154153rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)))
15593, 149, 154mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))
156 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 0 → (𝑧 = (vol‘𝑐) ↔ 0 = (vol‘𝑐)))
157156anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 0 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))))
158157rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))))
159107, 158elab 3319 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)))
160155, 159mpbir 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}
161160ne0ii 3882 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅
162 suprcl 10862 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈ ℝ)
163161, 162mp3an2 1404 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈ ℝ)
164132, 147, 163syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈ ℝ)
165116, 164readdcld 9948 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈ ℝ)
166165adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈ ℝ)
167 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
1686ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
1699ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
170 ovolsscl 23061 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
17164, 16, 170mp3an12 1406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
172171adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
173 difss 3699 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ran ((,) ∘ 𝑓)
174 ovolsscl 23061 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)
175173, 16, 174mp3an12 1406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)
176175adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)
177 ssrin 3800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ran ((,) ∘ 𝑓) → (𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴))
17864, 16sstri 3577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ
179 ovolss 23060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)))
180177, 178, 179sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ran ((,) ∘ 𝑓) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)))
181180ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)))
182 ssdif 3707 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ran ((,) ∘ 𝑓) → (𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))
183173, 16sstri 3577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ
184 ovolss 23060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
185182, 183, 184sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ran ((,) ∘ 𝑓) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
186185ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
187168, 169, 172, 176, 181, 186le2addd 10525 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
188 dfin4 3826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ran ((,) ∘ 𝑓) ∩ 𝐴) = ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))
189188fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . . . 24 (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
190189oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))) = ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
191187, 190syl6breq 4624 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
192191adantlll 750 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
193 simpll 786 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))
194188sseq2i 3593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ 𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
195194anbi1i 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎)))
196195rexbii 3023 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎)))
197196abbii 2726 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}
198197supeq1i 8236 . . . . . . . . . . . . . . . . . . . . . . . 24 sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )
19916jctl 562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ))
200199adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ))
201175, 183jctil 558 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ))
202201adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ))
203 ltso 9997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 < Or ℝ
204203a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → < Or ℝ)
205 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
206 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑥 ∈ V
207 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = 𝑥 → (𝑧 = (vol‘𝑐) ↔ 𝑥 = (vol‘𝑐)))
208207anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑥 → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))))
209208rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑥 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))))
210206, 209elab 3319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))
21116, 139mpan2 703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 ran ((,) ∘ 𝑓) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
212211ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
21348cldss 20643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → 𝑐 ⊆ ℝ)
214 ovolcl 23053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ⊆ ℝ → (vol*‘𝑐) ∈ ℝ*)
215213, 214syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) ∈ ℝ*)
216 xrlenlt 9982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((vol*‘𝑐) ∈ ℝ* ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
217215, 34, 216sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
218217adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
219 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (vol‘𝑐) → 𝑥 = (vol‘𝑐))
220219, 121sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → 𝑥 = (vol*‘𝑐))
221 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (vol*‘𝑐) → ((vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
222221notbid 307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (vol*‘𝑐) → (¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
223220, 222syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → (¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
224223adantrl 748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
225218, 224bitr4d 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥))
226212, 225mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
227226rexlimiva 3010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)) → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
228210, 227sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
229228adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}) → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
230 retopbas 22374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ran (,) ∈ TopBases
231 bastg 20581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
232230, 231ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ran (,) ⊆ (topGen‘ran (,))
23313, 232sstri 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,))
234 uniopn 20527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,))) → ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)))
23591, 233, 234mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,))
236 mblfinlem2 32617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) ∧ 𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)))
237235, 236mp3an1 1403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)))
238121eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) = (vol‘𝑐))
239238anim1i 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑥 < (vol*‘𝑐)) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐)))
240239ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (𝑥 < (vol*‘𝑐) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))))
241240anim2d 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → (𝑐 ran ((,) ∘ 𝑓) ∧ ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐)))))
242 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (vol*‘𝑐) ∈ V
243 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 = (vol*‘𝑐) → (𝑦 = (vol‘𝑐) ↔ (vol*‘𝑐) = (vol‘𝑐)))
244243anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = (vol*‘𝑐) → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ↔ (𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐))))
245 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = (vol*‘𝑐) → (𝑥 < 𝑦𝑥 < (vol*‘𝑐)))
246244, 245anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = (vol*‘𝑐) → (((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ((𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐))))
247242, 246spcev 3273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
248247anasss 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ran ((,) ∘ 𝑓) ∧ ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) → ∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
249241, 248syl6 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)))
250249reximia 2992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
251237, 250syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
252 r19.41v 3070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
253252exbii 1764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑦𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
254 rexcom4 3198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
255133anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = 𝑦 → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐))))
256255rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐))))
257256rexab 3336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦 ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
258253, 254, 2573bitr4i 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦)
259251, 258sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦)
260259adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓)))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦)
261204, 205, 229, 260eqsupd 8246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘ ran ((,) ∘ 𝑓)))
262261eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))
263262adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))
264 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (𝑐 ran ((,) ∘ 𝑓) ↔ 𝑎 ran ((,) ∘ 𝑓)))
265 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → (vol‘𝑐) = (vol‘𝑎))
266265eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (𝑧 = (vol‘𝑐) ↔ 𝑧 = (vol‘𝑎)))
267264, 266anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))))
268267cbvrexv 3148 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎)))
269268abbii 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}
270269supeq1i 8236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )
271263, 270syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))
272 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ↔ 𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
273272, 266anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))))
274273cbvrexv 3148 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎)))
275274abbii 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}
276275supeq1i 8236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )
277 simpll 786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
278 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = 𝑧 → (𝑦 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑏)))
279278anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = 𝑧 → ((𝑏𝐴𝑦 = (vol‘𝑏)) ↔ (𝑏𝐴𝑧 = (vol‘𝑏))))
280279rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑧 = (vol‘𝑏))))
281 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑐 → (𝑏𝐴𝑐𝐴))
282 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑐 → (vol‘𝑏) = (vol‘𝑐))
283282eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑐 → (𝑧 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑐)))
284281, 283anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑏 = 𝑐 → ((𝑏𝐴𝑧 = (vol‘𝑏)) ↔ (𝑐𝐴𝑧 = (vol‘𝑐))))
285284cbvrexv 3148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑧 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐)))
286280, 285syl6bb 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))))
287286cbvabv 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} = {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}
288287supeq1i 8236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < )
289288eqeq2i 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))
290289biimpi 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))
291290ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))
292 mblfinlem3 32618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ ((vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∧ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
293200, 277, 263, 291, 292syl112anc 1322 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
294276, 293syl5reqr 2659 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))
295 mblfinlem3 32618 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) ∧ ((vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))))
296200, 202, 271, 294, 295syl112anc 1322 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))))
297198, 296syl5eq 2656 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))))
298297, 293oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
299193, 298sylan 487 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
300192, 299breqtrrd 4611 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )))
301 ne0i 3880 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅)
302112, 301mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅)
303 ne0i 3880 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅)
304160, 303mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅)
305 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} = {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}
30674, 302, 90, 132, 304, 147, 305supadd 10868 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ))
307 reeanv 3086 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
308 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑢 ∈ V
309 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑢 → (𝑧 = (vol‘𝑎) ↔ 𝑢 = (vol‘𝑎)))
310309anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑢 → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎))))
311310rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑢 → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎))))
312308, 311elab 3319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))
313 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑣 ∈ V
314 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑣 → (𝑧 = (vol‘𝑐) ↔ 𝑣 = (vol‘𝑐)))
315314anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑣 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
316315rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑣 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
317313, 316elab 3319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))
318312, 317anbi12i 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
319307, 318bitr4i 266 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}))
320 an4 861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ↔ ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
321 oveq12 6558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐)) → (𝑢 + 𝑣) = ((vol‘𝑎) + (vol‘𝑐)))
32259adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → 𝑎 ∈ dom vol)
323322ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → 𝑎 ∈ dom vol)
324119adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → 𝑐 ∈ dom vol)
325324ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → 𝑐 ∈ dom vol)
326 ss2in 3802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) ⊆ (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
327188ineq1i 3772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) = (( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴))
328 incom 3767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) = (( ran ((,) ∘ 𝑓) ∖ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
329 disjdif 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (( ran ((,) ∘ 𝑓) ∖ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) = ∅
330327, 328, 3293eqtri 2636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) = ∅
331326, 330syl6sseq 3614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) ⊆ ∅)
332 ss0 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝑐) ⊆ ∅ → (𝑎𝑐) = ∅)
333331, 332syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) = ∅)
334333adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (𝑎𝑐) = ∅)
33561adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘𝑎) = (vol*‘𝑎))
336335ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑎) = (vol*‘𝑎))
33766, 16jctir 559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) → (𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ))
338683expa 1257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
339337, 338sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
340339ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴)) → (vol*‘𝑎) ∈ ℝ)
341340ad2ant2r 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol*‘𝑎) ∈ ℝ)
342336, 341eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑎) ∈ ℝ)
343121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘𝑐) = (vol*‘𝑐))
344343ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑐) = (vol*‘𝑐))
345124, 16jctir 559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) → (𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ))
3461263expa 1257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
347345, 346sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
348347ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (vol*‘𝑐) ∈ ℝ)
349348ad2ant2rl 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol*‘𝑐) ∈ ℝ)
350344, 349eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑐) ∈ ℝ)
351 volun 23120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol ∧ (𝑎𝑐) = ∅) ∧ ((vol‘𝑎) ∈ ℝ ∧ (vol‘𝑐) ∈ ℝ)) → (vol‘(𝑎𝑐)) = ((vol‘𝑎) + (vol‘𝑐)))
352323, 325, 334, 342, 350, 351syl32anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘(𝑎𝑐)) = ((vol‘𝑎) + (vol‘𝑐)))
353 unmbl 23112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol) → (𝑎𝑐) ∈ dom vol)
35459, 119, 353syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (𝑎𝑐) ∈ dom vol)
355 mblvol 23105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑐) ∈ dom vol → (vol‘(𝑎𝑐)) = (vol*‘(𝑎𝑐)))
356354, 355syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘(𝑎𝑐)) = (vol*‘(𝑎𝑐)))
357356ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘(𝑎𝑐)) = (vol*‘(𝑎𝑐)))
358352, 357eqtr3d 2646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → ((vol‘𝑎) + (vol‘𝑐)) = (vol*‘(𝑎𝑐)))
359321, 358sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑢 + 𝑣) = (vol*‘(𝑎𝑐)))
360 eqtr 2629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 = (𝑢 + 𝑣) ∧ (𝑢 + 𝑣) = (vol*‘(𝑎𝑐))) → 𝑦 = (vol*‘(𝑎𝑐)))
361360ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑢 + 𝑣) = (vol*‘(𝑎𝑐)) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎𝑐)))
362359, 361sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎𝑐)))
36366, 124anim12i 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎 ran ((,) ∘ 𝑓) ∧ 𝑐 ran ((,) ∘ 𝑓)))
364 unss 3749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ran ((,) ∘ 𝑓) ∧ 𝑐 ran ((,) ∘ 𝑓)) ↔ (𝑎𝑐) ⊆ ran ((,) ∘ 𝑓))
365363, 364sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) ⊆ ran ((,) ∘ 𝑓))
366 ovolss 23060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑎𝑐) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘(𝑎𝑐)) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
367365, 16, 366sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (vol*‘(𝑎𝑐)) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
368367ad3antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → (vol*‘(𝑎𝑐)) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
369362, 368eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
370369ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
371370expl 646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) → (((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
372320, 371syl5bir 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) → (((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
373372rexlimdvva 3020 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
374319, 373syl5bir 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
375374rexlimdvv 3019 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
376375alrimiv 1842 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
377 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑦 → (𝑡 = (𝑢 + 𝑣) ↔ 𝑦 = (𝑢 + 𝑣)))
3783772rexbidv 3039 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑦 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣)))
379378ralab 3334 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
380376, 379sylibr 223 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
381 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 = (𝑢 + 𝑣))
38274sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) → 𝑢 ∈ ℝ)
383132sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → 𝑣 ∈ ℝ)
384 readdcl 9898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ)
385382, 383, 384syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) ∧ ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ)
386385anandis 869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ)
387386adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → (𝑢 + 𝑣) ∈ ℝ)
388381, 387eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 ∈ ℝ)
389388ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ))
390389rexlimdvva 3020 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ))
391390abssdv 3639 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ)
392 00id 10090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 + 0) = 0
393392eqcomi 2619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (0 + 0)
394 rspceov 6590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ∧ 0 = (0 + 0)) → ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣))
395112, 160, 393, 394mp3an 1416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣)
396 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 0 → (𝑡 = (𝑢 + 𝑣) ↔ 0 = (𝑢 + 𝑣)))
3973962rexbidv 3039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 0 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣)))
398107, 397spcev 3273 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) → ∃𝑡𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣))
399395, 398ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)
400 abn0 3908 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ↔ ∃𝑡𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣))
401399, 400mpbir 220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅
402401a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅)
40387ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (vol*‘ ran ((,) ∘ 𝑓)) → (∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥 ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
404403rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥)
405380, 404mpdan 699 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥)
406391, 402, 4053jca 1235 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥))
407 suprleub 10866 . . . . . . . . . . . . . . . . . . . . . . . 24 ((({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
408406, 407mpancom 700 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
409380, 408mpbird 246 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
410306, 409eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
411410adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
41245, 166, 167, 300, 411letrd 10073 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
41344, 412sylan2 490 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≠ +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
41433, 413pm2.61dane 2869 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
415414adantlr 747 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
416 ssid 3587 . . . . . . . . . . . . . . . . . 18 ran ((,) ∘ 𝑓) ⊆ ran ((,) ∘ 𝑓)
41720ovollb 23054 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝑓) ⊆ ran ((,) ∘ 𝑓)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
418416, 417mpan2 703 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
419418ad2antlr 759 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
42012, 18, 27, 415, 419xrletrd 11869 . . . . . . . . . . . . . . 15 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
421420adantr 480 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
422 simpr 476 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
423421, 422breqtrrd 4611 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢)
424423expl 646 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
4253, 424sylan2 490 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
426425rexlimdva 3013 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
427426ralrimivw 2950 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ∀𝑢 ∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
428 eqeq1 2614 . . . . . . . . . . . 12 (𝑣 = 𝑢 → (𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
429428anbi2d 736 . . . . . . . . . . 11 (𝑣 = 𝑢 → ((𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
430429rexbidv 3034 . . . . . . . . . 10 (𝑣 = 𝑢 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
431430ralrab 3335 . . . . . . . . 9 (∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢 ↔ ∀𝑢 ∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
432427, 431sylibr 223 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢)
433 ssrab2 3650 . . . . . . . . 9 {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ*
43411adantl 481 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*)
435 infxrgelb 12037 . . . . . . . . 9 (({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ* ∧ ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*) → (((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
436433, 434, 435sylancr 694 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → (((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
437432, 436mpbird 246 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
438 eqid 2610 . . . . . . . . 9 {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
439438ovolval 23049 . . . . . . . 8 (𝑤 ⊆ ℝ → (vol*‘𝑤) = inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
440439ad2antrl 760 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → (vol*‘𝑤) = inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
441437, 440breqtrrd 4611 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤))
442441expr 641 . . . . 5 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ⊆ ℝ) → ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)))
4432, 442sylan2 490 . . . 4 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ∈ 𝒫 ℝ) → ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)))
444443ralrimiva 2949 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → ∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)))
445 ismbl2 23102 . . . . 5 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤))))
446445baibr 943 . . . 4 (𝐴 ⊆ ℝ → (∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol))
447446ad2antrr 758 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → (∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol))
448444, 447mpbid 221 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → 𝐴 ∈ dom vol)
4491, 448impbida 873 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   class class class wbr 4583   Or wor 4958   × cxp 5036  dom cdm 5038  ran crn 5039  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  supcsup 8229  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  (,)cioo 12046  [,)cico 12048  seqcseq 12663  abscabs 13822  topGenctg 15921  Topctop 20517  TopBasesctb 20520  Clsdccld 20630  vol*covol 23038  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-cmp 21000  df-con 21025  df-ovol 23040  df-vol 23041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator