HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Structured version   Visualization version   GIF version

Theorem isch2 27464
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch2
StepHypRef Expression
1 isch 27463 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻))
2 alcom 2024 . . . . 5 (∀𝑓𝑥((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
3 19.23v 1889 . . . . . . . 8 (∀𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
4 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
54elima2 5391 . . . . . . . . 9 (𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥))
65imbi1i 338 . . . . . . . 8 ((𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
73, 6bitr4i 266 . . . . . . 7 (∀𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻))
87albii 1737 . . . . . 6 (∀𝑥𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻))
9 dfss2 3557 . . . . . 6 (( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻))
108, 9bitr4i 266 . . . . 5 (∀𝑥𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻)
112, 10bitri 263 . . . 4 (∀𝑓𝑥((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻)
12 nnex 10903 . . . . . . . 8 ℕ ∈ V
13 elmapg 7757 . . . . . . . 8 ((𝐻S ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐻))
1412, 13mpan2 703 . . . . . . 7 (𝐻S → (𝑓 ∈ (𝐻𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐻))
1514anbi1d 737 . . . . . 6 (𝐻S → ((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)))
1615imbi1d 330 . . . . 5 (𝐻S → (((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
17162albidv 1838 . . . 4 (𝐻S → (∀𝑓𝑥((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1811, 17syl5bbr 273 . . 3 (𝐻S → (( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻 ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1918pm5.32i 667 . 2 ((𝐻S ∧ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻) ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
201, 19bitri 263 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473  wex 1695  wcel 1977  Vcvv 3173  wss 3540   class class class wbr 4583  cima 5041  wf 5800  (class class class)co 6549  𝑚 cmap 7744  cn 10897  𝑣 chli 27168   S csh 27169   C cch 27170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-map 7746  df-nn 10898  df-ch 27462
This theorem is referenced by:  chlimi  27475  isch3  27482  helch  27484  hsn0elch  27489  chintcli  27574  chscl  27884  nlelchi  28304  hmopidmchi  28394
  Copyright terms: Public domain W3C validator