Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem1 Structured version   Visualization version   GIF version

Theorem irrapxlem1 36404
Description: Lemma for irrapx1 36410. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 36399 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzssuz 12253 . . . 4 (0...𝐵) ⊆ (ℤ‘0)
2 uzssz 11583 . . . . 5 (ℤ‘0) ⊆ ℤ
3 zssre 11261 . . . . 5 ℤ ⊆ ℝ
42, 3sstri 3577 . . . 4 (ℤ‘0) ⊆ ℝ
51, 4sstri 3577 . . 3 (0...𝐵) ⊆ ℝ
65a1i 11 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...𝐵) ⊆ ℝ)
7 ovex 6577 . . 3 (0...(𝐵 − 1)) ∈ V
87a1i 11 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ∈ V)
9 nnm1nn0 11211 . . . . 5 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℕ0)
109adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ ℕ0)
11 nn0uz 11598 . . . 4 0 = (ℤ‘0)
1210, 11syl6eleq 2698 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘0))
13 nnz 11276 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
1413adantl 481 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
15 nnre 10904 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1615adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
1716ltm1d 10835 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) < 𝐵)
18 fzsdom2 13075 . . 3 ((((𝐵 − 1) ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ) ∧ (𝐵 − 1) < 𝐵) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1912, 14, 17, 18syl21anc 1317 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ≺ (0...𝐵))
2015ad2antlr 759 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
21 rpre 11715 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2221ad2antrr 758 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
23 elfzelz 12213 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
2423zred 11358 . . . . . . . . 9 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℝ)
2524adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝑎 ∈ ℝ)
2622, 25remulcld 9949 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐴 · 𝑎) ∈ ℝ)
27 1rp 11712 . . . . . . 7 1 ∈ ℝ+
28 modcl 12534 . . . . . . 7 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2926, 27, 28sylancl 693 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
3020, 29remulcld 9949 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ)
3130flcld 12461 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ)
3220recnd 9947 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
3332mul01d 10114 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) = 0)
34 modge0 12540 . . . . . . . . . 10 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ ((𝐴 · 𝑎) mod 1))
3526, 27, 34sylancl 693 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ ((𝐴 · 𝑎) mod 1))
36 0red 9920 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ∈ ℝ)
37 nngt0 10926 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
3837ad2antlr 759 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 < 𝐵)
39 lemul2 10755 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
4036, 29, 20, 38, 39syl112anc 1322 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
4135, 40mpbid 221 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4233, 41eqbrtrrd 4607 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4336, 30lenltd 10062 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)) ↔ ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0))
4442, 43mpbid 221 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0)
45 0z 11265 . . . . . . 7 0 ∈ ℤ
46 fllt 12469 . . . . . . 7 (((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ ∧ 0 ∈ ℤ) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4730, 45, 46sylancl 693 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4844, 47mtbid 313 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0)
4931zred 11358 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℝ)
5036, 49lenltd 10062 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ↔ ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
5148, 50mpbird 246 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))))
52 elnn0z 11267 . . . 4 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1)))))
5331, 51, 52sylanbrc 695 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0)
549ad2antlr 759 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℕ0)
55 flle 12462 . . . . . . 7 ((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
5630, 55syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
57 modlt 12541 . . . . . . . . 9 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) < 1)
5826, 27, 57sylancl 693 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) < 1)
59 1red 9934 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 1 ∈ ℝ)
60 ltmul2 10753 . . . . . . . . 9 ((((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6129, 59, 20, 38, 60syl112anc 1322 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6258, 61mpbid 221 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1))
6332mulid1d 9936 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 1) = 𝐵)
6462, 63breqtrd 4609 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < 𝐵)
6549, 30, 20, 56, 64lelttrd 10074 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 𝐵)
66 nncn 10905 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
67 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
68 npcan 10169 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
6966, 67, 68sylancl 693 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 − 1) + 1) = 𝐵)
7069ad2antlr 759 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 − 1) + 1) = 𝐵)
7165, 70breqtrrd 4611 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1))
7213ad2antlr 759 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℤ)
73 1z 11284 . . . . . 6 1 ∈ ℤ
74 zsubcl 11296 . . . . . 6 ((𝐵 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐵 − 1) ∈ ℤ)
7572, 73, 74sylancl 693 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℤ)
76 zleltp1 11305 . . . . 5 (((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7731, 75, 76syl2anc 691 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7871, 77mpbird 246 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1))
79 elfz2nn0 12300 . . 3 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)) ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ0 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1)))
8053, 54, 78, 79syl3anbrc 1239 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)))
81 oveq2 6557 . . . . 5 (𝑎 = 𝑥 → (𝐴 · 𝑎) = (𝐴 · 𝑥))
8281oveq1d 6564 . . . 4 (𝑎 = 𝑥 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑥) mod 1))
8382oveq2d 6565 . . 3 (𝑎 = 𝑥 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑥) mod 1)))
8483fveq2d 6107 . 2 (𝑎 = 𝑥 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))))
85 oveq2 6557 . . . . 5 (𝑎 = 𝑦 → (𝐴 · 𝑎) = (𝐴 · 𝑦))
8685oveq1d 6564 . . . 4 (𝑎 = 𝑦 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑦) mod 1))
8786oveq2d 6565 . . 3 (𝑎 = 𝑦 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑦) mod 1)))
8887fveq2d 6107 . 2 (𝑎 = 𝑦 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
896, 8, 19, 80, 84, 88fphpdo 36399 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  csdm 7840  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  cfl 12453   mod cmo 12530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-hash 12980
This theorem is referenced by:  irrapxlem2  36405
  Copyright terms: Public domain W3C validator