MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipblnfi Structured version   Visualization version   GIF version

Theorem ipblnfi 27095
Description: A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to . (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipblnfi.1 𝑋 = (BaseSet‘𝑈)
ipblnfi.7 𝑃 = (·𝑖OLD𝑈)
ipblnfi.9 𝑈 ∈ CPreHilOLD
ipblnfi.c 𝐶 = ⟨⟨ + , · ⟩, abs⟩
ipblnfi.l 𝐵 = (𝑈 BLnOp 𝐶)
ipblnfi.f 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
Assertion
Ref Expression
ipblnfi (𝐴𝑋𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑈   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem ipblnfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipblnfi.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 27055 . . . . . 6 𝑈 ∈ NrmCVec
3 ipblnfi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 ipblnfi.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
53, 4dipcl 26951 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
62, 5mp3an1 1403 . . . . 5 ((𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
76ancoms 468 . . . 4 ((𝐴𝑋𝑥𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
8 ipblnfi.f . . . 4 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
97, 8fmptd 6292 . . 3 (𝐴𝑋𝐹:𝑋⟶ℂ)
10 eqid 2610 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
113, 10nvscl 26865 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
122, 11mp3an1 1403 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
1312ad2ant2lr 780 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
14 simprr 792 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
15 simpll 786 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝐴𝑋)
16 eqid 2610 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 4dipdir 27081 . . . . . . . . 9 ((𝑈 ∈ CPreHilOLD ∧ ((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
181, 17mpan 702 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
1913, 14, 15, 18syl3anc 1318 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
20 simplr 788 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑦 ∈ ℂ)
21 simprl 790 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
223, 16, 10, 4, 1ipassi 27080 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋𝐴𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2320, 21, 15, 22syl3anc 1318 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2423oveq1d 6564 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2519, 24eqtrd 2644 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2612adantll 746 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
273, 16nvgcl 26859 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
282, 27mp3an1 1403 . . . . . . . . 9 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
2926, 28sylan 487 . . . . . . . 8 ((((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
3029anasss 677 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
31 oveq1 6556 . . . . . . . 8 (𝑥 = ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) → (𝑥𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
32 ovex 6577 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) ∈ V
3331, 8, 32fvmpt 6191 . . . . . . 7 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋 → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
3430, 33syl 17 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
35 oveq1 6556 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑃𝐴) = (𝑧𝑃𝐴))
36 ovex 6577 . . . . . . . . . 10 (𝑧𝑃𝐴) ∈ V
3735, 8, 36fvmpt 6191 . . . . . . . . 9 (𝑧𝑋 → (𝐹𝑧) = (𝑧𝑃𝐴))
3837ad2antrl 760 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑧𝑃𝐴))
3938oveq2d 6565 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦 · (𝐹𝑧)) = (𝑦 · (𝑧𝑃𝐴)))
40 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑃𝐴) = (𝑤𝑃𝐴))
41 ovex 6577 . . . . . . . . 9 (𝑤𝑃𝐴) ∈ V
4240, 8, 41fvmpt 6191 . . . . . . . 8 (𝑤𝑋 → (𝐹𝑤) = (𝑤𝑃𝐴))
4342ad2antll 761 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑤𝑃𝐴))
4439, 43oveq12d 6567 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
4525, 34, 443eqtr4d 2654 . . . . 5 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4645ralrimivva 2954 . . . 4 ((𝐴𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4746ralrimiva 2949 . . 3 (𝐴𝑋 → ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
48 ipblnfi.c . . . . 5 𝐶 = ⟨⟨ + , · ⟩, abs⟩
4948cnnv 26916 . . . 4 𝐶 ∈ NrmCVec
5048cnnvba 26918 . . . . 5 ℂ = (BaseSet‘𝐶)
5148cnnvg 26917 . . . . 5 + = ( +𝑣𝐶)
5248cnnvs 26919 . . . . 5 · = ( ·𝑠OLD𝐶)
53 eqid 2610 . . . . 5 (𝑈 LnOp 𝐶) = (𝑈 LnOp 𝐶)
543, 50, 16, 51, 10, 52, 53islno 26992 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec) → (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))))
552, 49, 54mp2an 704 . . 3 (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤))))
569, 47, 55sylanbrc 695 . 2 (𝐴𝑋𝐹 ∈ (𝑈 LnOp 𝐶))
57 eqid 2610 . . . 4 (normCV𝑈) = (normCV𝑈)
583, 57nvcl 26900 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘𝐴) ∈ ℝ)
592, 58mpan 702 . 2 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℝ)
603, 57, 4, 1sii 27093 . . . . 5 ((𝑧𝑋𝐴𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6160ancoms 468 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6237adantl 481 . . . . 5 ((𝐴𝑋𝑧𝑋) → (𝐹𝑧) = (𝑧𝑃𝐴))
6362fveq2d 6107 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) = (abs‘(𝑧𝑃𝐴)))
6459recnd 9947 . . . . 5 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℂ)
653, 57nvcl 26900 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
662, 65mpan 702 . . . . . 6 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
6766recnd 9947 . . . . 5 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℂ)
68 mulcom 9901 . . . . 5 ((((normCV𝑈)‘𝐴) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ∈ ℂ) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6964, 67, 68syl2an 493 . . . 4 ((𝐴𝑋𝑧𝑋) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
7061, 63, 693brtr4d 4615 . . 3 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7170ralrimiva 2949 . 2 (𝐴𝑋 → ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7248cnnvnm 26920 . . 3 abs = (normCV𝐶)
73 ipblnfi.l . . 3 𝐵 = (𝑈 BLnOp 𝐶)
743, 57, 72, 53, 73, 2, 49blo3i 27041 . 2 ((𝐹 ∈ (𝑈 LnOp 𝐶) ∧ ((normCV𝑈)‘𝐴) ∈ ℝ ∧ ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧))) → 𝐹𝐵)
7556, 59, 71, 74syl3anc 1318 1 (𝐴𝑋𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cop 4131   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   + caddc 9818   · cmul 9820  cle 9954  abscabs 13822  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  normCVcnmcv 26829  ·𝑖OLDcdip 26939   LnOp clno 26979   BLnOp cblo 26981  CPreHilOLDccphlo 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-lno 26983  df-nmoo 26984  df-blo 26985  df-0o 26986  df-ph 27052
This theorem is referenced by:  htthlem  27158
  Copyright terms: Public domain W3C validator