MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imainss Structured version   Visualization version   GIF version

Theorem imainss 5467
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))

Proof of Theorem imainss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . . . . . . . 11 𝑦 ∈ V
2 vex 3176 . . . . . . . . . . 11 𝑥 ∈ V
31, 2brcnv 5227 . . . . . . . . . 10 (𝑦𝑅𝑥𝑥𝑅𝑦)
4 19.8a 2039 . . . . . . . . . 10 ((𝑦𝐵𝑦𝑅𝑥) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
53, 4sylan2br 492 . . . . . . . . 9 ((𝑦𝐵𝑥𝑅𝑦) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
65ancoms 468 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝐵) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
76anim2i 591 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
8 simprl 790 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → 𝑥𝑅𝑦)
97, 8jca 553 . . . . . 6 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
109anassrs 678 . . . . 5 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
11 elin 3758 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴𝑥 ∈ (𝑅𝐵)))
122elima2 5391 . . . . . . . 8 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
1312anbi2i 726 . . . . . . 7 ((𝑥𝐴𝑥 ∈ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1411, 13bitri 263 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1514anbi1i 727 . . . . 5 ((𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦) ↔ ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
1610, 15sylibr 223 . . . 4 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
1716eximi 1752 . . 3 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
181elima2 5391 . . . . 5 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
1918anbi1i 727 . . . 4 ((𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
20 elin 3758 . . . 4 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵))
21 19.41v 1901 . . . 4 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
2219, 20, 213bitr4i 291 . . 3 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ ∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
231elima2 5391 . . 3 (𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))) ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
2417, 22, 233imtr4i 280 . 2 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) → 𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))))
2524ssriv 3572 1 ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wa 383  wex 1695  wcel 1977  cin 3539  wss 3540   class class class wbr 4583  ccnv 5037  cima 5041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator