MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinun2 Structured version   Visualization version   GIF version

Theorem iinun2 4522
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4510 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iinun2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.32v 3064 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (𝑦𝐵 ∨ ∀𝑥𝐴 𝑦𝐶))
2 elun 3715 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32ralbii 2963 . . . 4 (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 vex 3176 . . . . . 6 𝑦 ∈ V
5 eliin 4461 . . . . . 6 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
64, 5ax-mp 5 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
76orbi2i 540 . . . 4 ((𝑦𝐵𝑦 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∨ ∀𝑥𝐴 𝑦𝐶))
81, 3, 73bitr4i 291 . . 3 (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
9 eliin 4461 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
104, 9ax-mp 5 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
11 elun 3715 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
128, 10, 113bitr4i 291 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
1312eqriv 2607 1 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wo 382   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538   ciin 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-un 3545  df-iin 4458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator