MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulc Structured version   Visualization version   GIF version

Theorem i1fmulc 23276
Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulc (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)

Proof of Theorem i1fmulc
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9906 . . . . 5 ℝ ∈ V
21a1i 11 . . . 4 ((𝜑𝐴 = 0) → ℝ ∈ V)
3 i1fmulc.2 . . . . . 6 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 23249 . . . . . 6 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
65adantr 480 . . . 4 ((𝜑𝐴 = 0) → 𝐹:ℝ⟶ℝ)
7 i1fmulc.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 480 . . . 4 ((𝜑𝐴 = 0) → 𝐴 ∈ ℝ)
9 0red 9920 . . . 4 ((𝜑𝐴 = 0) → 0 ∈ ℝ)
10 simplr 788 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0)
1110oveq1d 6564 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥))
12 mul02lem2 10092 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
1312adantl 481 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
1411, 13eqtrd 2644 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0)
152, 6, 8, 9, 14caofid2 6826 . . 3 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) = (ℝ × {0}))
16 i1f0 23260 . . 3 (ℝ × {0}) ∈ dom ∫1
1715, 16syl6eqel 2696 . 2 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
18 remulcl 9900 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1918adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
20 fconst6g 6007 . . . . . 6 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶ℝ)
217, 20syl 17 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
221a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
23 inidm 3784 . . . . 5 (ℝ ∩ ℝ) = ℝ
2419, 21, 5, 22, 22, 23off 6810 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
2524adantr 480 . . 3 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
26 i1frn 23250 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
273, 26syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
28 ovex 6577 . . . . . . . 8 (𝐴 · 𝑦) ∈ V
29 eqid 2610 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
3028, 29fnmpti 5935 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹
31 dffn4 6034 . . . . . . 7 ((𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹 ↔ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
3230, 31mpbi 219 . . . . . 6 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
33 fofi 8135 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
3427, 32, 33sylancl 693 . . . . 5 (𝜑 → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
35 id 22 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹𝑤 ∈ ran 𝐹)
36 elsni 4142 . . . . . . . . . . . 12 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3736oveq1d 6564 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → (𝑥 · 𝑤) = (𝐴 · 𝑤))
38 oveq2 6557 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
3938eqeq2d 2620 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑥 · 𝑤) = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑤)))
4039rspcev 3282 . . . . . . . . . . 11 ((𝑤 ∈ ran 𝐹 ∧ (𝑥 · 𝑤) = (𝐴 · 𝑤)) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4135, 37, 40syl2anr 494 . . . . . . . . . 10 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
42 ovex 6577 . . . . . . . . . . 11 (𝑥 · 𝑤) ∈ V
43 eqeq1 2614 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑤) → (𝑧 = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑦)))
4443rexbidv 3034 . . . . . . . . . . 11 (𝑧 = (𝑥 · 𝑤) → (∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦) ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)))
4542, 44elab 3319 . . . . . . . . . 10 ((𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4641, 45sylibr 223 . . . . . . . . 9 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
4746adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹)) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
48 fconstg 6005 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
497, 48syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
50 ffn 5958 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
515, 50syl 17 . . . . . . . . 9 (𝜑𝐹 Fn ℝ)
52 dffn3 5967 . . . . . . . . 9 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
5351, 52sylib 207 . . . . . . . 8 (𝜑𝐹:ℝ⟶ran 𝐹)
5447, 49, 53, 22, 22, 23off 6810 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
55 frn 5966 . . . . . . 7 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5654, 55syl 17 . . . . . 6 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5729rnmpt 5292 . . . . . 6 ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}
5856, 57syl6sseqr 3615 . . . . 5 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
59 ssfi 8065 . . . . 5 ((ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin ∧ ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
6034, 58, 59syl2anc 691 . . . 4 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
6160adantr 480 . . 3 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
62 frn 5966 . . . . . . . . 9 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ℝ)
6324, 62syl 17 . . . . . . . 8 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ℝ)
6463ssdifssd 3710 . . . . . . 7 (𝜑 → (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) ⊆ ℝ)
6564adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) ⊆ ℝ)
6665sselda 3568 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ∈ ℝ)
673, 7i1fmulclem 23275 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
6866, 67syldan 486 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
69 i1fima 23251 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
703, 69syl 17 . . . . 5 (𝜑 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
7170ad2antrr 758 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
7268, 71eqeltrd 2688 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) ∈ dom vol)
7368fveq2d 6107 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦})) = (vol‘(𝐹 “ {(𝑦 / 𝐴)})))
743ad2antrr 758 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐹 ∈ dom ∫1)
757ad2antrr 758 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ∈ ℝ)
76 simplr 788 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
7766, 75, 76redivcld 10732 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ ℝ)
7866recnd 9947 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ∈ ℂ)
7975recnd 9947 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
80 eldifsni 4261 . . . . . . . 8 (𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) → 𝑦 ≠ 0)
8180adantl 481 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ≠ 0)
8278, 79, 81, 76divne0d 10696 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ≠ 0)
83 eldifsn 4260 . . . . . 6 ((𝑦 / 𝐴) ∈ (ℝ ∖ {0}) ↔ ((𝑦 / 𝐴) ∈ ℝ ∧ (𝑦 / 𝐴) ≠ 0))
8477, 82, 83sylanbrc 695 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ (ℝ ∖ {0}))
85 i1fima2sn 23253 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ (𝑦 / 𝐴) ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8674, 84, 85syl2anc 691 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8773, 86eqeltrd 2688 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦})) ∈ ℝ)
8825, 61, 72, 87i1fd 23254 . 2 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
8917, 88pm2.61dane 2869 1 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  {csn 4125  cmpt 4643   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Fincfn 7841  cr 9814  0cc0 9815   · cmul 9820   / cdiv 10563  volcvol 23039  1citg1 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195
This theorem is referenced by:  itg1mulc  23277  i1fsub  23281  itg1sub  23282  itg2const  23313  itg2mulclem  23319  itg2monolem1  23323  i1fibl  23380  itgitg1  23381  itg2addnclem  32631  ftc1anclem5  32659
  Copyright terms: Public domain W3C validator