Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval Structured version   Visualization version   GIF version

Theorem hoidmvval 39467
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval.x (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
hoidmvval (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval
StepHypRef Expression
1 hoidmvval.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
21a1i 11 . . 3 (𝜑𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))))
3 oveq2 6557 . . . . 5 (𝑥 = 𝑋 → (ℝ ↑𝑚 𝑥) = (ℝ ↑𝑚 𝑋))
4 eqeq1 2614 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
5 prodeq1 14478 . . . . . 6 (𝑥 = 𝑋 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
64, 5ifbieq2d 4061 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
73, 3, 6mpt2eq123dv 6615 . . . 4 (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
87adantl 481 . . 3 ((𝜑𝑥 = 𝑋) → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
9 hoidmvval.x . . 3 (𝜑𝑋 ∈ Fin)
10 ovex 6577 . . . . 5 (ℝ ↑𝑚 𝑋) ∈ V
1110, 10mpt2ex 7136 . . . 4 (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V
1211a1i 11 . . 3 (𝜑 → (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V)
132, 8, 9, 12fvmptd 6197 . 2 (𝜑 → (𝐿𝑋) = (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
14 fveq1 6102 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
1514adantr 480 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑘) = (𝐴𝑘))
16 fveq1 6102 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
1716adantl 481 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝑘) = (𝐵𝑘))
1815, 17oveq12d 6567 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
1918fveq2d 6107 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2019prodeq2ad 38659 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2120ifeq2d 4055 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
2221adantl 481 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
23 hoidmvval.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
24 reex 9906 . . . . 5 ℝ ∈ V
2524a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
26 elmapg 7757 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2725, 9, 26syl2anc 691 . . 3 (𝜑 → (𝐴 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2823, 27mpbird 246 . 2 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
29 hoidmvval.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
30 elmapg 7757 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3125, 9, 30syl2anc 691 . . 3 (𝜑 → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3229, 31mpbird 246 . 2 (𝜑𝐵 ∈ (ℝ ↑𝑚 𝑋))
33 c0ex 9913 . . . 4 0 ∈ V
34 prodex 14476 . . . 4 𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ V
3533, 34ifex 4106 . . 3 if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V
3635a1i 11 . 2 (𝜑 → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V)
3713, 22, 28, 32, 36ovmpt2d 6686 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  ifcif 4036  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  Fincfn 7841  cr 9814  0cc0 9815  [,)cico 12048  cprod 14474  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-prod 14475
This theorem is referenced by:  hoidmvcl  39472  hoidmv0val  39473  hoidmvn0val  39474  hsphoidmvle  39476
  Copyright terms: Public domain W3C validator