Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem3 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem3 39483
Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the non-empty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem3.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem3.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem3.l (𝜑𝐴 < 𝐵)
hoidmv1lelem3.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem3.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem3.x (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
hoidmv1lelem3.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem3.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem3.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem3 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Distinct variable groups:   𝐴,𝑗,𝑧   𝐵,𝑗,𝑧   𝐶,𝑗,𝑧   𝐷,𝑗,𝑧   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝜑,𝑗,𝑧

Proof of Theorem hoidmv1lelem3
Dummy variables 𝑦 𝑖 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoidmv1lelem3.b . . 3 (𝜑𝐵 ∈ ℝ)
2 hoidmv1lelem3.a . . 3 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 10337 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 nnex 10903 . . . . . . 7 ℕ ∈ V
54a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
6 icossicc 12131 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
7 0xr 9965 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ∈ ℝ*)
9 pnfxr 9971 . . . . . . . . . 10 +∞ ∈ ℝ*
109a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → +∞ ∈ ℝ*)
11 hoidmv1lelem3.c . . . . . . . . . . . 12 (𝜑𝐶:ℕ⟶ℝ)
1211ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
13 hoidmv1lelem3.d . . . . . . . . . . . . 13 (𝜑𝐷:ℕ⟶ℝ)
1413ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
151adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝐵 ∈ ℝ)
1614, 15ifcld 4081 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ)
17 volicore 39471 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1812, 16, 17syl2anc 691 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1918rexrd 9968 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ*)
2016rexrd 9968 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*)
21 icombl 23139 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
2212, 20, 21syl2anc 691 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
23 volge0 38853 . . . . . . . . . 10 (((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2518ltpnfd 11831 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) < +∞)
268, 10, 19, 24, 25elicod 12095 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,)+∞))
276, 26sseldi 3566 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,]+∞))
28 eqid 2610 . . . . . . 7 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2927, 28fmptd 6292 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))):ℕ⟶(0[,]+∞))
305, 29sge0xrcl 39278 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ*)
319a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
32 hoidmv1lelem3.r . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
3332rexrd 9968 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
34 nfv 1830 . . . . . . 7 𝑗𝜑
35 volf 23104 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
3635a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3714rexrd 9968 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
38 icombl 23139 . . . . . . . . 9 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
3912, 37, 38syl2anc 691 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
4036, 39ffvelrnd 6268 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
4112rexrd 9968 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
4212leidd 10473 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
43 min1 11894 . . . . . . . . . 10 (((𝐷𝑗) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
4414, 15, 43syl2anc 691 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
45 icossico 12114 . . . . . . . . 9 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
4641, 37, 42, 44, 45syl22anc 1319 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
47 volss 23108 . . . . . . . 8 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4822, 39, 46, 47syl3anc 1318 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4934, 5, 27, 40, 48sge0lempt 39303 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
5032ltpnfd 11831 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
5130, 33, 31, 49, 50xrlelttrd 11867 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) < +∞)
5230, 31, 51xrltned 38514 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≠ +∞)
5352neneqd 2787 . . 3 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞)
545, 29sge0repnf 39279 . . 3 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞))
5553, 54mpbird 246 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ)
561rexrd 9968 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
572, 1iccssred 38574 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
58 hoidmv1lelem3.u . . . . . . . . . . 11 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
59 ssrab2 3650 . . . . . . . . . . 11 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
6058, 59eqsstri 3598 . . . . . . . . . 10 𝑈 ⊆ (𝐴[,]𝐵)
61 hoidmv1lelem3.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
62 hoidmv1lelem3.s . . . . . . . . . . . 12 𝑆 = sup(𝑈, ℝ, < )
632, 1, 61, 11, 13, 32, 58, 62hoidmv1lelem1 39481 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
6463simp1d 1066 . . . . . . . . . 10 (𝜑𝑆𝑈)
6560, 64sseldi 3566 . . . . . . . . 9 (𝜑𝑆 ∈ (𝐴[,]𝐵))
6657, 65sseldd 3569 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
6766rexrd 9968 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
68 simpl 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝜑)
69 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ 𝐵𝑆)
7068, 66syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 ∈ ℝ)
7168, 1syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝐵 ∈ ℝ)
7270, 71ltnled 10063 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → (𝑆 < 𝐵 ↔ ¬ 𝐵𝑆))
7369, 72mpbird 246 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 < 𝐵)
74 hoidmv1lelem3.x . . . . . . . . . . . . 13 (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
762rexrd 9968 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
7776adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ*)
7856adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ*)
7967adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ ℝ*)
8060, 57syl5ss 3579 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ⊆ ℝ)
81 ne0i 3880 . . . . . . . . . . . . . . . . 17 (𝑆𝑈𝑈 ≠ ∅)
8264, 81syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ≠ ∅)
8363simp3d 1068 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
8463simp2d 1067 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑈)
85 suprub 10863 . . . . . . . . . . . . . . . 16 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝐴𝑈) → 𝐴 ≤ sup(𝑈, ℝ, < ))
8680, 82, 83, 84, 85syl31anc 1321 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ sup(𝑈, ℝ, < ))
8786, 62syl6breqr 4625 . . . . . . . . . . . . . 14 (𝜑𝐴𝑆)
8887adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴𝑆)
89 simpr 476 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 < 𝐵)
9077, 78, 79, 88, 89elicod 12095 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ (𝐴[,)𝐵))
9175, 90sseldd 3569 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → 𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
92 eliun 4460 . . . . . . . . . . 11 (𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)) ↔ ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
9391, 92sylib 207 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
942adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ)
95943ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴 ∈ ℝ)
961adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ)
97963ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐵 ∈ ℝ)
9811adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐶:ℕ⟶ℝ)
99983ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐶:ℕ⟶ℝ)
10013adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐷:ℕ⟶ℝ)
1011003ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐷:ℕ⟶ℝ)
102 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
103 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
104102, 103oveq12d 6567 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
105104fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)(𝐷𝑖))) = (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
106105cbvmptv 4678 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
107106fveq2i 6106 . . . . . . . . . . . . . . . 16 ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗)))))
108107, 32syl5eqel 2692 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
109108adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
1101093ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
111103breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑗 → ((𝐷𝑖) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑧))
112111, 103ifbieq1d 4059 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧) = if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))
113102, 112oveq12d 6567 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → ((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))
114113fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
115114cbvmptv 4678 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
116115eqcomi 2619 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))
117116fveq2i 6106 . . . . . . . . . . . . . . . . 17 ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))
118117breq2i 4591 . . . . . . . . . . . . . . . 16 ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))))
119118a1i 11 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴[,]𝐵) → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))))
120119rabbiia 3161 . . . . . . . . . . . . . 14 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
12158, 120eqtri 2632 . . . . . . . . . . . . 13 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
12264adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝑆𝑈)
1231223ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆𝑈)
124883ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴𝑆)
125893ad2ant1 1075 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 < 𝐵)
126 simp2 1055 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑗 ∈ ℕ)
127 simp3 1056 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
128 eqid 2610 . . . . . . . . . . . . 13 if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)
12995, 97, 99, 101, 110, 121, 123, 124, 125, 126, 127, 128hoidmv1lelem2 39482 . . . . . . . . . . . 12 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → ∃𝑢𝑈 𝑆 < 𝑢)
1301293exp 1256 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → (𝑗 ∈ ℕ → (𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢)))
131130rexlimdv 3012 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → (∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢))
13293, 131mpd 15 . . . . . . . . 9 ((𝜑𝑆 < 𝐵) → ∃𝑢𝑈 𝑆 < 𝑢)
13368, 73, 132syl2anc 691 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ∃𝑢𝑈 𝑆 < 𝑢)
13457adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝐴[,]𝐵) ⊆ ℝ)
13560, 134syl5ss 3579 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ⊆ ℝ)
13682adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ≠ ∅)
1372, 1jca 553 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
138137adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13960a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
14064adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑆𝑈)
141 iccsupr 12137 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝑆𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
142138, 139, 140, 141syl3anc 1318 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
143142simp3d 1068 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
144 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢𝑈)
145 suprub 10863 . . . . . . . . . . . . . 14 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
146135, 136, 143, 144, 145syl31anc 1321 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
147146, 62syl6breqr 4625 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → 𝑢𝑆)
148147ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑢𝑈 𝑢𝑆)
14960sseli 3564 . . . . . . . . . . . . . . 15 (𝑢𝑈𝑢 ∈ (𝐴[,]𝐵))
150149adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢 ∈ (𝐴[,]𝐵))
151134, 150sseldd 3569 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ∈ ℝ)
15266adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑆 ∈ ℝ)
153151, 152lenltd 10062 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → (𝑢𝑆 ↔ ¬ 𝑆 < 𝑢))
154153ralbidva 2968 . . . . . . . . . . 11 (𝜑 → (∀𝑢𝑈 𝑢𝑆 ↔ ∀𝑢𝑈 ¬ 𝑆 < 𝑢))
155148, 154mpbid 221 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑈 ¬ 𝑆 < 𝑢)
156 ralnex 2975 . . . . . . . . . 10 (∀𝑢𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢𝑈 𝑆 < 𝑢)
157155, 156sylib 207 . . . . . . . . 9 (𝜑 → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
158157adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
159133, 158condan 831 . . . . . . 7 (𝜑𝐵𝑆)
160 iccleub 12100 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑆 ∈ (𝐴[,]𝐵)) → 𝑆𝐵)
16176, 56, 65, 160syl3anc 1318 . . . . . . 7 (𝜑𝑆𝐵)
16256, 67, 159, 161xrletrid 11862 . . . . . 6 (𝜑𝐵 = 𝑆)
163162, 64eqeltrd 2688 . . . . 5 (𝜑𝐵𝑈)
164163, 58syl6eleq 2698 . . . 4 (𝜑𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
165 oveq1 6556 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝐴) = (𝐵𝐴))
166 breq2 4587 . . . . . . . . . . 11 (𝑧 = 𝐵 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐵))
167 id 22 . . . . . . . . . . 11 (𝑧 = 𝐵𝑧 = 𝐵)
168166, 167ifbieq2d 4061 . . . . . . . . . 10 (𝑧 = 𝐵 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))
169168oveq2d 6565 . . . . . . . . 9 (𝑧 = 𝐵 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))
170169fveq2d 6107 . . . . . . . 8 (𝑧 = 𝐵 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
171170mpteq2dv 4673 . . . . . . 7 (𝑧 = 𝐵 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))
172171fveq2d 6107 . . . . . 6 (𝑧 = 𝐵 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
173165, 172breq12d 4596 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
174173elrab 3331 . . . 4 (𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
175164, 174sylib 207 . . 3 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
176175simprd 478 . 2 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
1773, 55, 32, 176, 49letrd 10073 1 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  ifcif 4036   ciun 4455   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  [,)cico 12048  [,]cicc 12049  volcvol 23039  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-sumge0 39256
This theorem is referenced by:  hoidmv1le  39484
  Copyright terms: Public domain W3C validator