HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Structured version   Visualization version   GIF version

Theorem hmopidmchi 28394
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmchi ran 𝑇C

Proof of Theorem hmopidmchi
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4 𝑇 ∈ HrmOp
2 hmoplin 28185 . . . 4 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑇 ∈ LinOp
43rnelshi 28302 . 2 ran 𝑇S
5 eqid 2610 . . . . . . . 8 (norm ∘ − ) = (norm ∘ − )
65hilxmet 27436 . . . . . . 7 (norm ∘ − ) ∈ (∞Met‘ ℋ)
7 eqid 2610 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
87methaus 22135 . . . . . . 7 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Haus)
96, 8mp1i 13 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ Haus)
10 eqid 2610 . . . . . . . . . . . 12 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1110, 5hhims 27413 . . . . . . . . . . . 12 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1210, 11, 7hhlm 27440 . . . . . . . . . . 11 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))
13 resss 5342 . . . . . . . . . . 11 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1412, 13eqsstri 3598 . . . . . . . . . 10 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1514ssbri 4627 . . . . . . . . 9 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1615adantl 481 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
177mopntopon 22054 . . . . . . . . . 10 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
186, 17mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
193lnopfi 28212 . . . . . . . . . . . 12 𝑇: ℋ⟶ ℋ
2019a1i 11 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇: ℋ⟶ ℋ)
2120feqmptd 6159 . . . . . . . . . 10 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇 = (𝑦 ∈ ℋ ↦ (𝑇𝑦)))
22 hmopbdoptHIL 28231 . . . . . . . . . . . . 13 (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp)
231, 22ax-mp 5 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
24 lnopcnbd 28279 . . . . . . . . . . . . 13 (𝑇 ∈ LinOp → (𝑇 ∈ ConOp ↔ 𝑇 ∈ BndLinOp))
253, 24ax-mp 5 . . . . . . . . . . . 12 (𝑇 ∈ ConOp ↔ 𝑇 ∈ BndLinOp)
2623, 25mpbir 220 . . . . . . . . . . 11 𝑇 ∈ ConOp
275, 7hhcno 28147 . . . . . . . . . . 11 ConOp = ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2826, 27eleqtri 2686 . . . . . . . . . 10 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2921, 28syl6eqelr 2697 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ (𝑇𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3018cnmptid 21274 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ 𝑦) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3110hhnv 27406 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3210hhvs 27411 . . . . . . . . . . 11 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3311, 7, 32vmcn 26938 . . . . . . . . . 10 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3431, 33mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3518, 29, 30, 34cnmpt12f 21279 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3616, 35lmcn 20919 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥))
37 simpl 472 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ran 𝑇)
384shssii 27454 . . . . . . . . . . . . . 14 ran 𝑇 ⊆ ℋ
39 fss 5969 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇 ∧ ran 𝑇 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 693 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
4140ffvelrnda 6267 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
42 fveq2 6103 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
43 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → 𝑦 = (𝑓𝑘))
4442, 43oveq12d 6567 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) − 𝑦) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
45 eqid 2610 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) = (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))
46 ovex 6577 . . . . . . . . . . . . 13 ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) ∈ V
4744, 45, 46fvmpt 6191 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
4841, 47syl 17 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
49 ffn 5958 . . . . . . . . . . . . . . . 16 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5019, 49ax-mp 5 . . . . . . . . . . . . . . 15 𝑇 Fn ℋ
51 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → (𝑇𝑦) = (𝑇‘(𝑇𝑥)))
52 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → 𝑦 = (𝑇𝑥))
5351, 52eqeq12d 2625 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑇𝑥) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5453ralrn 6270 . . . . . . . . . . . . . . 15 (𝑇 Fn ℋ → (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5550, 54ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
56 hmopidmch.2 . . . . . . . . . . . . . . . 16 (𝑇𝑇) = 𝑇
5756fveq1i 6104 . . . . . . . . . . . . . . 15 ((𝑇𝑇)‘𝑥) = (𝑇𝑥)
5819, 19hocoi 28007 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑇𝑇)‘𝑥) = (𝑇‘(𝑇𝑥)))
5957, 58syl5reqr 2659 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
6055, 59mprgbir 2911 . . . . . . . . . . . . 13 𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦
61 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6261adantlr 747 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6342, 43eqeq12d 2625 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6463rspccv 3279 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 → ((𝑓𝑘) ∈ ran 𝑇 → (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6560, 62, 64mpsyl 66 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) = (𝑓𝑘))
6665, 41eqeltrd 2688 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) ∈ ℋ)
67 hvsubeq0 27309 . . . . . . . . . . . . 13 (((𝑇‘(𝑓𝑘)) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6866, 41, 67syl2anc 691 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6965, 68mpbird 246 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0)
7048, 69eqtrd 2644 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = 0)
71 fvco3 6185 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
7271adantlr 747 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
73 ax-hv0cl 27244 . . . . . . . . . . . . 13 0 ∈ ℋ
7473elexi 3186 . . . . . . . . . . . 12 0 ∈ V
7574fvconst2 6374 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
7675adantl 481 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
7770, 72, 763eqtr4d 2654 . . . . . . . . 9 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
7877ralrimiva 2949 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
79 ovex 6577 . . . . . . . . . . 11 ((𝑇𝑦) − 𝑦) ∈ V
8079, 45fnmpti 5935 . . . . . . . . . 10 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ
81 fnfco 5982 . . . . . . . . . 10 (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8280, 40, 81sylancr 694 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8374fconst 6004 . . . . . . . . . 10 (ℕ × {0}):ℕ⟶{0}
84 ffn 5958 . . . . . . . . . 10 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
8583, 84ax-mp 5 . . . . . . . . 9 (ℕ × {0}) Fn ℕ
86 eqfnfv 6219 . . . . . . . . 9 ((((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8782, 85, 86sylancl 693 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8878, 87mpbird 246 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}))
89 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
9089hlimveci 27431 . . . . . . . . 9 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
9190adantl 481 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
92 fveq2 6103 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑇𝑦) = (𝑇𝑥))
93 id 22 . . . . . . . . . 10 (𝑦 = 𝑥𝑦 = 𝑥)
9492, 93oveq12d 6567 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑇𝑦) − 𝑦) = ((𝑇𝑥) − 𝑥))
95 ovex 6577 . . . . . . . . 9 ((𝑇𝑥) − 𝑥) ∈ V
9694, 45, 95fvmpt 6191 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9791, 96syl 17 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9836, 88, 973brtr3d 4614 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑇𝑥) − 𝑥))
9973a1i 11 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 0 ∈ ℋ)
100 1zzd 11285 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 1 ∈ ℤ)
101 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
102101lmconst 20875 . . . . . . 7 (((MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ) ∧ 0 ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
10318, 99, 100, 102syl3anc 1318 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
1049, 98, 103lmmo 20994 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑇𝑥) − 𝑥) = 0)
10519ffvelrni 6266 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
10691, 105syl 17 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ℋ)
107 hvsubeq0 27309 . . . . . 6 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
108106, 91, 107syl2anc 691 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
109104, 108mpbid 221 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) = 𝑥)
110 fnfvelrn 6264 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
11150, 91, 110sylancr 694 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ran 𝑇)
112109, 111eqeltrrd 2689 . . 3 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
113112gen2 1714 . 2 𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
114 isch2 27464 . 2 (ran 𝑇C ↔ (ran 𝑇S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)))
1154, 113, 114mpbir2an 957 1 ran 𝑇C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  wss 3540  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039  cres 5040  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  1c1 9816  cn 10897  cz 11254  ∞Metcxmt 19552  MetOpencmopn 19557  TopOnctopon 20518   Cn ccn 20838  𝑡clm 20840  Hauscha 20922   ×t ctx 21173  NrmCVeccnv 26823  chil 27160   + cva 27161   · csm 27162  normcno 27164  0c0v 27165   cmv 27166  𝑣 chli 27168   S csh 27169   C cch 27170  ConOpccop 27187  LinOpclo 27188  BndLinOpcbo 27189  HrmOpcho 27191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-dc 9151  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326  ax-hcompl 27443
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-lm 20843  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-cfil 22861  df-cau 22862  df-cmet 22863  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ssp 26961  df-lno 26983  df-nmoo 26984  df-blo 26985  df-0o 26986  df-ph 27052  df-cbn 27103  df-hlo 27126  df-hnorm 27209  df-hba 27210  df-hvsub 27212  df-hlim 27213  df-hcau 27214  df-sh 27448  df-ch 27462  df-oc 27493  df-ch0 27494  df-shs 27551  df-pjh 27638  df-h0op 27991  df-nmop 28082  df-cnop 28083  df-lnop 28084  df-bdop 28085  df-unop 28086  df-hmop 28087
This theorem is referenced by:  hmopidmpji  28395  hmopidmch  28396
  Copyright terms: Public domain W3C validator