Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapval Structured version   Visualization version   GIF version

Theorem hgmapval 36197
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 36192. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
hgmapval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
hgmapval (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Distinct variable groups:   𝑦,𝑣,𝐾   𝑣,𝐵,𝑦   𝑣,𝑀,𝑦   𝑣,𝑈,𝑦   𝑣,𝑉   𝑣,𝑊,𝑦   𝑣,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐶(𝑦,𝑣)   𝑅(𝑦,𝑣)   (𝑦,𝑣)   · (𝑦,𝑣)   𝐻(𝑦,𝑣)   𝐼(𝑦,𝑣)   𝑉(𝑦)   𝑌(𝑦,𝑣)

Proof of Theorem hgmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hgmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hgmapfval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hgmapfval.v . . . 4 𝑉 = (Base‘𝑈)
4 hgmapfval.t . . . 4 · = ( ·𝑠𝑈)
5 hgmapfval.r . . . 4 𝑅 = (Scalar‘𝑈)
6 hgmapfval.b . . . 4 𝐵 = (Base‘𝑅)
7 hgmapfval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hgmapfval.s . . . 4 = ( ·𝑠𝐶)
9 hgmapfval.m . . . 4 𝑀 = ((HDMap‘𝐾)‘𝑊)
10 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
11 hgmapfval.k . . . 4 (𝜑 → (𝐾𝑌𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hgmapfval 36196 . . 3 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
1312fveq1d 6105 . 2 (𝜑 → (𝐼𝑋) = ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋))
14 hgmapval.x . . 3 (𝜑𝑋𝐵)
15 riotaex 6515 . . 3 (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V
16 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 · 𝑣) = (𝑋 · 𝑣))
1716fveq2d 6107 . . . . . . 7 (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣)))
1817eqeq1d 2612 . . . . . 6 (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
1918ralbidv 2969 . . . . 5 (𝑥 = 𝑋 → (∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2019riotabidv 6513 . . . 4 (𝑥 = 𝑋 → (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
21 eqid 2610 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
2220, 21fvmptg 6189 . . 3 ((𝑋𝐵 ∧ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V) → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2314, 15, 22sylancl 693 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2413, 23eqtrd 2644 1 (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  LHypclh 34288  DVecHcdvh 35385  LCDualclcd 35893  HDMapchdma 36100  HGMapchg 36193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-hgmap 36194
This theorem is referenced by:  hgmapcl  36199  hgmapvs  36201
  Copyright terms: Public domain W3C validator