Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6a Structured version   Visualization version   GIF version

Theorem hdmap1l6a 36117
Description: Lemma for hdmap1l6 36129. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6a (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))

Proof of Theorem hdmap1l6a
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1l6.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1l6.p . . . 4 + = (+g𝑈)
5 hdmap1l6.s . . . 4 = (-g𝑈)
6 hdmap1l6c.o . . . 4 0 = (0g𝑈)
7 hdmap1l6.n . . . 4 𝑁 = (LSpan‘𝑈)
8 hdmap1l6.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1l6.d . . . 4 𝐷 = (Base‘𝐶)
10 hdmap1l6.a . . . 4 = (+g𝐶)
11 hdmap1l6.r . . . 4 𝑅 = (-g𝐶)
12 hdmap1l6.q . . . 4 𝑄 = (0g𝐶)
13 hdmap1l6.l . . . 4 𝐿 = (LSpan‘𝐶)
14 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
15 hdmap1l6.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
16 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 hdmap1l6.f . . . 4 (𝜑𝐹𝐷)
18 hdmap1l6cl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 hdmap1l6.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
20 hdmap1l6e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21 hdmap1l6e.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
22 hdmap1l6e.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
23 hdmap1l6.yz . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
24 hdmap1l6.fg . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
25 hdmap1l6.fe . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem2 36116 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 𝐸)}))
2724, 25oveq12d 6567 . . . . 5 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐺 𝐸))
2827sneqd 4137 . . . 4 (𝜑 → {((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))} = {(𝐺 𝐸)})
2928fveq2d 6107 . . 3 (𝜑 → (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) = (𝐿‘{(𝐺 𝐸)}))
3026, 29eqtr4d 2647 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem1 36115 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
3227oveq2d 6565 . . . . 5 (𝜑 → (𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) = (𝐹𝑅(𝐺 𝐸)))
3332sneqd 4137 . . . 4 (𝜑 → {(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))} = {(𝐹𝑅(𝐺 𝐸))})
3433fveq2d 6107 . . 3 (𝜑 → (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
3531, 34eqtr4d 2647 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))
361, 2, 16dvhlmod 35417 . . . . 5 (𝜑𝑈 ∈ LMod)
3720eldifad 3552 . . . . 5 (𝜑𝑌𝑉)
3821eldifad 3552 . . . . 5 (𝜑𝑍𝑉)
393, 4lmodvacl 18700 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
4036, 37, 38, 39syl3anc 1318 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
413, 4, 6, 7, 36, 37, 38, 23lmodindp1 18835 . . . 4 (𝜑 → (𝑌 + 𝑍) ≠ 0 )
42 eldifsn 4260 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
4340, 41, 42sylanbrc 695 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
441, 8, 16lcdlmod 35899 . . . 4 (𝜑𝐶 ∈ LMod)
451, 2, 16dvhlvec 35416 . . . . . . 7 (𝜑𝑈 ∈ LVec)
4618eldifad 3552 . . . . . . 7 (𝜑𝑋𝑉)
473, 6, 7, 45, 37, 21, 46, 23, 22lspindp2 18956 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
4847simpld 474 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 48, 18, 37hdmap1cl 36112 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
503, 6, 7, 45, 20, 38, 46, 23, 22lspindp1 18954 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5150simpld 474 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
521, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 51, 18, 38hdmap1cl 36112 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
539, 10lmodvacl 18700 . . . 4 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
5444, 49, 52, 53syl3anc 1318 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
55 eqid 2610 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
563, 55, 7, 36, 37, 38lspprcl 18799 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈))
573, 4, 7, 36, 37, 38lspprvacl 18820 . . . . . 6 (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍}))
5855, 7, 36, 56, 57lspsnel5a 18817 . . . . 5 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}))
593, 55, 7, 36, 56, 46lspsnel5 18816 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
6022, 59mtbid 313 . . . . 5 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))
61 nssne2 3625 . . . . 5 (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6258, 60, 61syl2anc 691 . . . 4 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6362necomd 2837 . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
641, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 17, 43, 54, 63, 19hdmap1eq 36109 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) ∧ (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))))
6530, 35, 64mpbir2and 959 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  cdif 3537  wss 3540  {csn 4125  {cpr 4127  cotp 4133  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  -gcsg 17247  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  LCDualclcd 35893  mapdcmpd 35931  HDMap1chdma1 36099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lcv 33324  df-lfl 33363  df-lkr 33391  df-ldual 33429  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702  df-lcdual 35894  df-mapd 35932  df-hdmap1 36101
This theorem is referenced by:  hdmap1l6d  36121  hdmap1l6e  36122  hdmap1l6f  36123  hdmap1l6j  36127
  Copyright terms: Public domain W3C validator