Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbt Structured version   Visualization version   GIF version

Theorem hbt 36719
Description: The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
hbt.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
hbt (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR)

Proof of Theorem hbt
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnrring 36701 . . 3 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
2 hbt.p . . . 4 𝑃 = (Poly1𝑅)
32ply1ring 19439 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . 2 (𝑅 ∈ LNoeR → 𝑃 ∈ Ring)
5 eqid 2610 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2610 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
75, 6islnr3 36704 . . . . . . 7 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅))))
87simprbi 479 . . . . . 6 (𝑅 ∈ LNoeR → (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)))
98adantr 480 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)))
10 eqid 2610 . . . . . . 7 (LIdeal‘𝑃) = (LIdeal‘𝑃)
11 eqid 2610 . . . . . . 7 (ldgIdlSeq‘𝑅) = (ldgIdlSeq‘𝑅)
122, 10, 11, 6hbtlem7 36714 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅))
131, 12sylan 487 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅))
141ad2antrr 758 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑅 ∈ Ring)
15 simplr 788 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑎 ∈ (LIdeal‘𝑃))
16 simpr 476 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 peano2nn0 11210 . . . . . . . 8 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
1817adantl 481 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (𝑏 + 1) ∈ ℕ0)
19 nn0re 11178 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
2019lep1d 10834 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ≤ (𝑏 + 1))
2120adantl 481 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ≤ (𝑏 + 1))
222, 10, 11, 14, 15, 16, 18, 21hbtlem4 36715 . . . . . 6 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1)))
2322ralrimiva 2949 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑏 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1)))
24 nacsfix 36293 . . . . 5 (((LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)) ∧ ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅) ∧ ∀𝑏 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) → ∃𝑐 ∈ ℕ0𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
259, 13, 23, 24syl3anc 1318 . . . 4 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑐 ∈ ℕ0𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
26 fzfi 12633 . . . . . . 7 (0...𝑐) ∈ Fin
27 eqid 2610 . . . . . . . . 9 (RSpan‘𝑃) = (RSpan‘𝑃)
28 simpll 786 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑅 ∈ LNoeR)
29 simplr 788 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑎 ∈ (LIdeal‘𝑃))
30 elfznn0 12302 . . . . . . . . . 10 (𝑒 ∈ (0...𝑐) → 𝑒 ∈ ℕ0)
3130adantl 481 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑒 ∈ ℕ0)
322, 10, 11, 27, 28, 29, 31hbtlem6 36718 . . . . . . . 8 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒))
3332ralrimiva 2949 . . . . . . 7 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒))
34 fveq2 6103 . . . . . . . . . . 11 (𝑏 = (𝑓𝑒) → ((RSpan‘𝑃)‘𝑏) = ((RSpan‘𝑃)‘(𝑓𝑒)))
3534fveq2d 6107 . . . . . . . . . 10 (𝑏 = (𝑓𝑒) → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏)) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒))))
3635fveq1d 6105 . . . . . . . . 9 (𝑏 = (𝑓𝑒) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))
3736sseq2d 3596 . . . . . . . 8 (𝑏 = (𝑓𝑒) → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3837ac6sfi 8089 . . . . . . 7 (((0...𝑐) ∈ Fin ∧ ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3926, 33, 38sylancr 694 . . . . . 6 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
4039adantr 480 . . . . 5 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
41 frn 5966 . . . . . . . . . . . . 13 (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin))
4241ad2antrl 760 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin))
43 inss1 3795 . . . . . . . . . . . 12 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
4442, 43syl6ss 3580 . . . . . . . . . . 11 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ 𝒫 𝑎)
4544unissd 4398 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 𝒫 𝑎)
46 unipw 4845 . . . . . . . . . 10 𝒫 𝑎 = 𝑎
4745, 46syl6sseq 3614 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓𝑎)
48 simpllr 795 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 ∈ (LIdeal‘𝑃))
49 eqid 2610 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
5049, 10lidlss 19031 . . . . . . . . . 10 (𝑎 ∈ (LIdeal‘𝑃) → 𝑎 ⊆ (Base‘𝑃))
5148, 50syl 17 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 ⊆ (Base‘𝑃))
5247, 51sstrd 3578 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ (Base‘𝑃))
53 fvex 6113 . . . . . . . . 9 (Base‘𝑃) ∈ V
5453elpw2 4755 . . . . . . . 8 ( ran 𝑓 ∈ 𝒫 (Base‘𝑃) ↔ ran 𝑓 ⊆ (Base‘𝑃))
5552, 54sylibr 223 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ 𝒫 (Base‘𝑃))
56 simprl 790 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin))
57 ffn 5958 . . . . . . . . 9 (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → 𝑓 Fn (0...𝑐))
58 fniunfv 6409 . . . . . . . . 9 (𝑓 Fn (0...𝑐) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) = ran 𝑓)
5956, 57, 583syl 18 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) = ran 𝑓)
60 inss2 3796 . . . . . . . . . . 11 (𝒫 𝑎 ∩ Fin) ⊆ Fin
6156ffvelrnda 6267 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓𝑔) ∈ (𝒫 𝑎 ∩ Fin))
6260, 61sseldi 3566 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓𝑔) ∈ Fin)
6362ralrimiva 2949 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
64 iunfi 8137 . . . . . . . . 9 (((0...𝑐) ∈ Fin ∧ ∀𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
6526, 63, 64sylancr 694 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
6659, 65eqeltrrd 2689 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ Fin)
6755, 66elind 3760 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin))
681ad3antrrr 762 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑅 ∈ Ring)
694ad3antrrr 762 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑃 ∈ Ring)
7027, 49, 10rspcl 19043 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ ran 𝑓 ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
7169, 52, 70syl2anc 691 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
7227, 10rspssp 19047 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃) ∧ ran 𝑓𝑎) → ((RSpan‘𝑃)‘ ran 𝑓) ⊆ 𝑎)
7369, 48, 47, 72syl3anc 1318 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) ⊆ 𝑎)
74 nn0re 11178 . . . . . . . . . . 11 (𝑔 ∈ ℕ0𝑔 ∈ ℝ)
7574adantl 481 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑔 ∈ ℝ)
76 simplrl 796 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐 ∈ ℕ0)
7776adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈ ℕ0)
7877nn0red 11229 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈ ℝ)
79 simprl 790 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔 ∈ ℕ0)
80 simprr 792 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔𝑐)
8176adantr 480 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑐 ∈ ℕ0)
82 fznn0 12301 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℕ0 → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0𝑔𝑐)))
8381, 82syl 17 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0𝑔𝑐)))
8479, 80, 83mpbir2and 959 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔 ∈ (0...𝑐))
85 simplrr 797 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))
86 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔))
87 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑔 → (𝑓𝑒) = (𝑓𝑔))
8887fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑔 → ((RSpan‘𝑃)‘(𝑓𝑒)) = ((RSpan‘𝑃)‘(𝑓𝑔)))
8988fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔 → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒))) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔))))
90 id 22 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔𝑒 = 𝑔)
9189, 90fveq12d 6109 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9286, 91sseq12d 3597 . . . . . . . . . . . . . 14 (𝑒 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔)))
9392rspcva 3280 . . . . . . . . . . . . 13 ((𝑔 ∈ (0...𝑐) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9484, 85, 93syl2anc 691 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9568adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑅 ∈ Ring)
96 fvssunirn 6127 . . . . . . . . . . . . . . . 16 (𝑓𝑔) ⊆ ran 𝑓
9796, 52syl5ss 3579 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (𝑓𝑔) ⊆ (Base‘𝑃))
9827, 49, 10rspcl 19043 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ (𝑓𝑔) ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
9969, 97, 98syl2anc 691 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
10099adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
10171adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
10268, 3syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑃 ∈ Ring)
103102adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑃 ∈ Ring)
10427, 49rspssid 19044 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ ran 𝑓 ⊆ (Base‘𝑃)) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10569, 52, 104syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
106105adantr 480 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10796, 106syl5ss 3579 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (𝑓𝑔) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10827, 10rspssp 19047 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃) ∧ (𝑓𝑔) ⊆ ((RSpan‘𝑃)‘ ran 𝑓)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
109103, 101, 107, 108syl3anc 1318 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
1102, 10, 11, 95, 100, 101, 109, 79hbtlem3 36716 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
11194, 110sstrd 3578 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
112111anassrs 678 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑔𝑐) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
113 nn0z 11277 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℕ0𝑐 ∈ ℤ)
114113adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐 ∈ ℤ)
115 nn0z 11277 . . . . . . . . . . . . . . . 16 (𝑔 ∈ ℕ0𝑔 ∈ ℤ)
116115ad2antrl 760 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ ℤ)
117 simprr 792 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐𝑔)
118 eluz2 11569 . . . . . . . . . . . . . . 15 (𝑔 ∈ (ℤ𝑐) ↔ (𝑐 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑐𝑔))
119114, 116, 117, 118syl3anbrc 1239 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ (ℤ𝑐))
12076, 119sylan 487 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ (ℤ𝑐))
121 simprr 792 . . . . . . . . . . . . . 14 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
122121ad2antrr 758 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
123 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔))
124123eqeq1d 2612 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)))
125124rspcva 3280 . . . . . . . . . . . . 13 ((𝑔 ∈ (ℤ𝑐) ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
126120, 122, 125syl2anc 691 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
12776nn0red 11229 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐 ∈ ℝ)
128127leidd 10473 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐𝑐)
129111expr 641 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)))
130129ralrimiva 2949 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)))
131 breq1 4586 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 → (𝑔𝑐𝑐𝑐))
132 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
133 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
134132, 133sseq12d 3597 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
135131, 134imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑐 → ((𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)) ↔ (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))))
136135rspcva 3280 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℕ0 ∧ ∀𝑔 ∈ ℕ0 (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))) → (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
13776, 130, 136syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
138128, 137mpd 15 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
139138adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
14068adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑅 ∈ Ring)
14171adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
14276adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐 ∈ ℕ0)
143 simprl 790 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ ℕ0)
144 simprr 792 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐𝑔)
1452, 10, 11, 140, 141, 142, 143, 144hbtlem4 36715 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
146139, 145sstrd 3578 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
147126, 146eqsstrd 3602 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
148147anassrs 678 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑐𝑔) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
14975, 78, 112, 148lecasei 10022 . . . . . . . . 9 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
150149ralrimiva 2949 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
1512, 10, 11, 68, 71, 48, 73, 150hbtlem5 36717 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) = 𝑎)
152151eqcomd 2616 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 = ((RSpan‘𝑃)‘ ran 𝑓))
153 fveq2 6103 . . . . . . . 8 (𝑏 = ran 𝑓 → ((RSpan‘𝑃)‘𝑏) = ((RSpan‘𝑃)‘ ran 𝑓))
154153eqeq2d 2620 . . . . . . 7 (𝑏 = ran 𝑓 → (𝑎 = ((RSpan‘𝑃)‘𝑏) ↔ 𝑎 = ((RSpan‘𝑃)‘ ran 𝑓)))
155154rspcev 3282 . . . . . 6 (( ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin) ∧ 𝑎 = ((RSpan‘𝑃)‘ ran 𝑓)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15667, 152, 155syl2anc 691 . . . . 5 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15740, 156exlimddv 1850 . . . 4 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15825, 157rexlimddv 3017 . . 3 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
159158ralrimiva 2949 . 2 (𝑅 ∈ LNoeR → ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
16049, 10, 27islnr2 36703 . 2 (𝑃 ∈ LNoeR ↔ (𝑃 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)))
1614, 159, 160sylanbrc 695 1 (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   ciun 4455   class class class wbr 4583  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  Basecbs 15695  Ringcrg 18370  LIdealclidl 18991  RSpancrsp 18992  Poly1cpl1 19368  NoeACScnacs 36283  LNoeRclnr 36698  ldgIdlSeqcldgis 36710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ocomp 15790  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-preset 16751  df-drs 16752  df-poset 16769  df-ipo 16975  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-rlreg 19104  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620  df-nacs 36284  df-lfig 36656  df-lnm 36664  df-lnr 36699  df-ldgis 36711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator