Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpomndo Structured version   Visualization version   GIF version

Theorem grpomndo 32844
Description: A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grpomndo (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)

Proof of Theorem grpomndo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 ran 𝐺 = ran 𝐺
21isgrpo 26735 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
32biimpd 218 . . 3 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
41grpoidinv 26746 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)))
5 simpl 472 . . . . . . . . . . 11 ((((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
65ralimi 2936 . . . . . . . . . 10 (∀𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∀𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
76reximi 2994 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
81ismndo2 32843 . . . . . . . . . . . . 13 (𝐺 ∈ GrpOp → (𝐺 ∈ MndOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
98biimprcd 239 . . . . . . . . . . . 12 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
1093exp 1256 . . . . . . . . . . 11 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1110impcom 445 . . . . . . . . . 10 ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1211com3l 87 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
137, 12syl 17 . . . . . . . 8 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
144, 13mpcom 37 . . . . . . 7 (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp))
1514expdcom 454 . . . . . 6 (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1615a1i 11 . . . . 5 (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1716com13 86 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
18173imp 1249 . . 3 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
193, 18syli 38 . 2 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
2019pm2.43i 50 1 (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   × cxp 5036  ran crn 5039  wf 5800  (class class class)co 6549  GrpOpcgr 26727  MndOpcmndo 32835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-ov 6552  df-grpo 26731  df-ass 32812  df-exid 32814  df-mgmOLD 32818  df-sgrOLD 32830  df-mndo 32836
This theorem is referenced by:  isdrngo2  32927
  Copyright terms: Public domain W3C validator