MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolcan Structured version   Visualization version   GIF version

Theorem grpolcan 26768
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grplcan.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpolcan ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem grpolcan
StepHypRef Expression
1 oveq2 6557 . . . . . 6 ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
21adantl 481 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
3 grplcan.1 . . . . . . . . . . 11 𝑋 = ran 𝐺
4 eqid 2610 . . . . . . . . . . 11 (GId‘𝐺) = (GId‘𝐺)
5 eqid 2610 . . . . . . . . . . 11 (inv‘𝐺) = (inv‘𝐺)
63, 4, 5grpolinv 26764 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
76adantlr 747 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
87oveq1d 6564 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = ((GId‘𝐺)𝐺𝐴))
93, 5grpoinvcl 26762 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
109adantrl 748 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
11 simprr 792 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → 𝐶𝑋)
12 simprl 790 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → 𝐴𝑋)
1310, 11, 123jca 1235 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐴𝑋))
143grpoass 26741 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐴𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
1513, 14syldan 486 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
1615anassrs 678 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐴) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)))
173, 4grpolid 26754 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
1817adantr 480 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
198, 16, 183eqtr3d 2652 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
2019adantrl 748 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
2120adantr 480 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐴)) = 𝐴)
226adantrl 748 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺𝐶) = (GId‘𝐺))
2322oveq1d 6564 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵))
249adantrl 748 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
25 simprr 792 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
26 simprl 790 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
2724, 25, 263jca 1235 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐵𝑋))
283grpoass 26741 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (((inv‘𝐺)‘𝐶) ∈ 𝑋𝐶𝑋𝐵𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
2927, 28syldan 486 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((((inv‘𝐺)‘𝐶)𝐺𝐶)𝐺𝐵) = (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)))
303, 4grpolid 26754 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
3130adantrr 749 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
3223, 29, 313eqtr3d 2652 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
3332adantlr 747 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
3433adantr 480 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → (((inv‘𝐺)‘𝐶)𝐺(𝐶𝐺𝐵)) = 𝐵)
352, 21, 343eqtr3d 2652 . . . 4 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝐶𝐺𝐴) = (𝐶𝐺𝐵)) → 𝐴 = 𝐵)
3635exp53 645 . . 3 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵)))))
37363imp2 1274 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) → 𝐴 = 𝐵))
38 oveq2 6557 . 2 (𝐴 = 𝐵 → (𝐶𝐺𝐴) = (𝐶𝐺𝐵))
3937, 38impbid1 214 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  ran crn 5039  cfv 5804  (class class class)co 6549  GrpOpcgr 26727  GIdcgi 26728  invcgn 26729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-grpo 26731  df-gid 26732  df-ginv 26733
This theorem is referenced by:  grpo2inv  26769  vclcan  26810  rngolcan  32887  rngolz  32891
  Copyright terms: Public domain W3C validator